Publications by authors named "Yun-Tao Zheng"

The difunctionalization of alkenes-a process that installs two functional groups in a single operation and transforms chemical feedstocks into value-added products-is one of the most appealing synthetic methods in contemporary chemistry. However, the introduction of two distinct functional groups via two readily accessible nucleophiles remains a formidable challenge. Existing intermolecular alkene azidocyanation methods, which primarily focus on aryl alkenes and rely on stoichiometric chemical oxidants.

View Article and Find Full Text PDF

The 1,2-diamine motif is prevalent in natural products, small-molecule pharmaceuticals, and catalysts for asymmetric synthesis. Transition metal catalyzed alkene diazidation has evolved to be an attractive strategy to access vicinal primary diamines but remains challenging, especially for practical applications, due to the restriction to a certain type of olefins, the frequent use of chemical oxidants, and the requirement for high loadings of metal catalysts (1 mol % or above). Herein we report a scalable Cu-electrocatalytic alkene diazidation reaction with 0.

View Article and Find Full Text PDF

The development of efficient and sustainable methods for carbon-phosphorus bond formation is of great importance due to the wide application of organophosphorus compounds in chemistry, material sciences and biology. Previous C-H phosphorylation reactions under nonelectrochemical or electrochemical conditions require directing groups, transition metal catalysts, or chemical oxidants and suffer from limited scope. Herein we disclose a catalyst- and external oxidant-free, electrochemical C-H phosphorylation reaction of arenes in continuous flow for the synthesis of aryl phosphorus compounds.

View Article and Find Full Text PDF

Indole is prevalent in bioactive compounds and natural products. The development of efficient and sustainable methods to access this privileged structural scaffold has been a long-standing interest of synthetic chemists. Herein, we report an electrocatalytic method for the synthesis of indoles through dehydrogenative cyclization of 2-vinylanilides.

View Article and Find Full Text PDF