Mitochondria are essential organelles for energy production, calcium homeostasis, redox signaling, and other cellular responses involved in pulmonary vascular biology and disease processes. Mitochondrial homeostasis depends on a balance in mitochondrial fusion and fission (dynamics). Mitochondrial dynamics are regulated by a viable circadian clock.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
March 2024
The high mortality rate in patients with chronic obstructive pulmonary disease (COPD) may be due to pulmonary hypertension (PH). These diseases are highly associated with cigarette smoke and its key component nicotine. Here, we created a novel animal model of PH using coexposure to nicotine (or cigarette smoke) and hypoxia.
View Article and Find Full Text PDFProtein restriction (PR) leads to bone marrow hypoplasia with changes in stromal cellularity components of the extracellular matrix in hematopoietic stem cells (HSCs). However, the underlying signaling mechanisms are poorly understood. We hypothesize that PR impairs the HSC mitogen-activated protein kinase (MAPK) signaling pathway response activation.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells (SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i), which is generated and regulated by various ion channels.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, which is often due to pulmonary hypertension (PH). The underlying molecular mechanisms are poorly understood, and current medications are neither specific nor always effective. In this review, we highlight the recent findings on the roles of altered mitochondrial bioenergetics in PH in COPD.
View Article and Find Full Text PDFMitochondria are important organelles that act as a primary site to produce reactive oxygen species (ROS). Additionally, mitochondria play a pivotal role in the regulation of Ca signaling, fatty acid oxidation, and ketone synthesis. Dysfunction of these signaling molecules leads to the development of pulmonary hypertension (PH), atherosclerosis, and other vascular diseases.
View Article and Find Full Text PDFInflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a progressive lung disease characterized by persistent pulmonary vasoconstriction. Another well-recognized characteristic of PH is the muscularization of peripheral pulmonary arteries. This pulmonary vasoremodeling manifests in medial hypertrophy/hyperplasia of smooth muscle cells (SMCs) with possible neointimal formation.
View Article and Find Full Text PDFAsthma is a chronic disease characterized by airway hyperresponsiveness, which can be caused by exposure to an allergen, spasmogen, or be induced by exercise. Despite its prevalence, the exact mechanisms by which the airway becomes hyperresponsive in asthma are not fully understood. There is evidence that myosin light-chain kinase is overexpressed, with a concomitant downregulation of myosin light-chain phosphatase in the airway smooth muscle, leading to sustained contraction.
View Article and Find Full Text PDFCa/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional protein kinase and has been recently recognized to play a vital role in pathological events in the pulmonary system. CaMKII has diverse downstream targets that promote vascular disease, asthma, and cancer, so improved understanding of CaMKII signaling has the potential to lead to new therapies for lung diseases. Multiple studies have demonstrated that CaMKII is involved in redox modulation of ryanodine receptors (RyRs).
View Article and Find Full Text PDFAims: Ryanodine receptor-1 (RyR1) is essential for skeletal muscle cell functions. However, its roles in vascular smooth muscle cells (SMCs) are well recognized. This study aims to determine the potential physiological importance and difference in systemic and pulmonary artery SMCs (SASMCs and PASMCs).
View Article and Find Full Text PDFTacrolimus (TAC, also called FK506), a common immunosuppressive drug used to prevent allograft rejection in transplant patients, is well known to alter the functions of blood vessels. In this study, we sought to determine whether chronic treatment of TAC could inhibit the activity of big-conductance Ca-activated K (BK) channels in vascular smooth muscle cells (SMCs), leading to hypertension. Our data reveal that the activity of BK channels was inhibited in cerebral artery SMCs (CASMCs) from mice after intraperitoneal injection of TAC once a day for 4 weeks.
View Article and Find Full Text PDFCa signaling in pulmonary arterial smooth muscle cells (PASMCs) plays an important role in pulmonary hypertension (PH). However, the underlying specific ion channel mechanisms remain largely unknown. Here, we report ryanodine receptor (RyR) channel activity and Ca release both are increased, and association of RyR2 by FK506 binding protein 12.
View Article and Find Full Text PDFRieske iron-sulfur protein (RISP) is a catalytic subunit of the complex III in the mitochondrial electron transport chain. Studies for years have revealed that RISP is essential for the generation of intracellular reactive oxygen species (ROS) via delicate signaling pathways associated with many important molecules such as protein kinase C-ε, NADPH oxidase, and ryanodine receptors. More significantly, mitochondrial RISP-mediated ROS production has been implicated in the development of hypoxic pulmonary vasoconstriction, leading to pulmonary hypertension, right heart failure, and death.
View Article and Find Full Text PDFAll seven canonical transient potential receptor (TRPC1-7) channel members are expressed in mammalian airway smooth muscle cells (ASMCs). Among this family, TRPC3 channel plays an important role in the control of the resting [Ca] and agonist-induced increase in [Ca]. This channel is significantly upregulated in molecular expression and functional activity in airway diseases.
View Article and Find Full Text PDFIt is known that mitochondrial reactive oxygen species generation ([ROS]) causes the release of Ca ryanodine receptor-2 (RyR2) on the sarcoplasmic reticulum (SR) in pulmonary artery smooth muscle cells (PASMCs), playing an essential role in hypoxic pulmonary vasoconstriction (HPV). In this study, we sought to determine whether hypoxia-induced RyR2-mediated Ca release may in turn promote [ROS] in PASMCs and the underlying signaling mechanism. Our data reveal that application of caffeine or norepinephrine to induce Ca release increased [ROS] in PASMCs.
View Article and Find Full Text PDFRieske iron-sulfur protein (RISP) is a catalytic subunit of the complex III in the mitochondrial electron transport chain. Studies for years have revealed that RISP is essential for the generation of intracellular reactive oxygen species (ROS) via delicate signaling pathways associated with many important molecules such as protein kinase C-ε, NADPH oxidase, and ryanodine receptors. More significantly, mitochondrial RISP-mediated ROS production has been implicated in the development of hypoxic pulmonary vasoconstriction, leading to pulmonary hypertension, right heart failure, and death.
View Article and Find Full Text PDFAzithromycin (AZM) has been used for the treatment of asthma and chronic obstructive pulmonary disease (COPD); however, the effects and underlying mechanisms of AZM remain largely unknown. The effects of AZM on airway smooth muscles (ASMs) and the underlying mechanisms were studied using isometric muscle force measurements, the examination of lung slices, imaging, and patch-clamp techniques. AZM completely inhibited acetylcholine (ACH)-induced precontraction of ASMs in animals (mice, guinea pigs, and rabbits) and humans.
View Article and Find Full Text PDFBackground: Human Yippee-like-4 (YPEL4) is a member of the YPEL gene family. This family has been characterized as the first highly conserved family of genes coding for proteins that contain putative zinc-finger-like metal-binding domains, known as the Yippee domain. The YPEL family proteins are located at the centrosome adjacent to the nucleolus during interphase and mitotic apparatus during mitosis.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2018
Hypoxia-induced pulmonary vasoconstriction (HPV) is attributed to an increase in intracellular Ca concentration ([Ca]) in pulmonary artery smooth muscle cells (PASMCs). We have reported that phospholipase C-γ1 (PLCγ1) plays a significant role in the hypoxia-induced increase in [Ca] in PASMCs and attendant HPV. In this study, we intended to determine molecular mechanisms for hypoxic Ca and contractile responses in PASMCs.
View Article and Find Full Text PDFThe effects of Ca sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone, as well as the underlying mechanisms, are not clear. In this investigation, we elucidated the underlying mechanisms of the distinct effects of Ca sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone. In CASMCs, owing to the functional loss of Ca-activated Cl (Clca) channels, Ca sparks activated large-conductance Ca-activated K channels (BKs), resulting in a decreases in tone against a spontaneous depolarization-caused high tone in the resting state.
View Article and Find Full Text PDFHypoxic pulmonary vasoconstriction (HPV) occurs during both fetal and postnatal development and plays a critical role in matching regional alveolar perfusion with ventilation in humans and animals. HPV also contributes significantly to the development of pulmonary hypertension. Although the molecular mechanisms of HPV and pulmonary hypertension remain incompletely understood, increasing evidence demonstrates that hypoxia induces an elevated intracellular reactive oxygen species concentration ([ROS]) in pulmonary artery smooth muscle cells (PASMCs).
View Article and Find Full Text PDFHypoxia, namely a lack of oxygen in the blood, induces pulmonary vasoconstriction and vasoremodeling, which serve as essential pathologic factors leading to pulmonary hypertension (PH). The underlying molecular mechanisms are uncertain; however, pulmonary artery smooth muscle cells (PASMCs) play an essential role in hypoxia-induced pulmonary vasoconstriction, vasoremodeling, and PH. Hypoxia causes oxidative damage to DNAs, proteins, and lipids.
View Article and Find Full Text PDFContraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca- activated K (BK) channels. Great progress has been made in studies of BK channels in UBSMCs.
View Article and Find Full Text PDF