Inhibition of the excessive NO production has been recognized as a potential means for the treatment of rheumatoid arthritis (RA). In order to discover more potent inhibitors and explore the preliminary structure activity relationship, a series of unique stereodimers of sinomenine analogues were designed and synthesized. Their inhibitory activity on NO production and cytotoxicity were evaluated using LPS-activated murine macrophages RAW264.
View Article and Find Full Text PDFSET and MYND domain-containing protein 3 (SMYD3) is a histone methyltransferase that plays an important role in transcriptional regulation in human carcinogenesis. It can specifically methylate histone H3 at lysine 4 and activate the transcription of a set of downstream genes, including several oncogenes (e.g.
View Article and Find Full Text PDFUrsolic acid (UA), a pentacyclic triterpenoid compound, is widely distributed in the plant kingdom and has a broad range of biological effects. This study was carried out for the first time to investigate the potential role of UA in the differentiation of human leukemia HL60 cells and the underlying mechanisms in it. UA could induce differentiation of HL60 cells into the monocytic lineage, as assessed by the morphological change, nitroblue tetrazolium reduction assay, and expression of CD14 and CD11b surface antigens.
View Article and Find Full Text PDFIn a continuing study on discovery of more potent derivatives of sinomenine (1), a clinically available alkaloid for rheumatoid arthritis (RA) treatment, oxidation of sinomenine provided two unique stereoisomers, disinomenines 2 and 3. The structure of 3 was determined by MS, NMR, and X-ray analysis. The formation of 2 and 3 via oxidation of sinomenine by potassium permanganate (KMnO4) exhibited a pH-dependent stereoselectivity.
View Article and Find Full Text PDF