High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis.
View Article and Find Full Text PDFWe synthesized a biothiol-sensitive nanoprobe by assembling gold nanoparticles with a novel redox-responsive silica (ReSi) matrix using dithiobis (succinimidyl propionate) and (3-aminopropyl) trimethoxysilane. Thin layer disulfide-bonded networks of the ReSi could differentially respond to extra- and intracellular glutathione in cancer cells within 30 min; furthermore, targeted cellular uptake could be monitored in situ by fluorescence recovery. Sigmoidal dose-response pattern of the nanoprobes presented in this study were attributed to the buried disulfide-linked 3D nanostructure of the ReSi nanoshell, optimized at an appropriate thickness, enabling not only buffering of small redox disturbances in the extracellular milieu but also the satisfied sensitivity for rapid redox sensing.
View Article and Find Full Text PDFPhotodynamic therapy, that is, excitation of a photosensitizer with light to generate reactive oxygen species such as singlet oxygen, has emerged as a noninvasive technique for cancer theranostics. However, the clinical use of many photosensitizers is impeded by their hydrophobicity, the nonspecific damage they cause to normal tissues, and their susceptibility to environmental degradation. In this study, we developed a simple electrostatic adsorption strategy to fabricate aptamer-silica nanocomposites by sequentially functionalizing nanocomposites with the cell surface-associated mucin 1 aptamer for tumor targeting and a hydrophilic photosensitizer, methylene blue, for photodynamic therapy applications.
View Article and Find Full Text PDFThe rapid development in nanomaterials has brought great opportunities to cancer theranostics, which aims to combine diagnostics and therapy for cancer treatment and thereby improve the healthcare of patients. In this review we focus on the recent progress of several cancer theranostic strategies using mesoporous silica nanoparticles and carbon-based nanomaterials. Silicon and carbon are both group IV elements; they have been the most abundant and significant non-metallic substances in human life.
View Article and Find Full Text PDFTumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy.
View Article and Find Full Text PDFChemotherapy is an important modality in cancer treatment. The major challenges of recent works are to improve drug loading, increase selectivity to target cells, and control the precise release of drugs. In the present study, we devised a smart drug carrier, an aptamer/hairpin DNA-gold nanoparticle (apt/hp-Au NP) conjugate for targeted delivery of drugs.
View Article and Find Full Text PDF