Researchers have been exploring alternative methods for bone tissue engineering, as current management of critical bone defects may be a significant challenge for both patient and surgeon with conventional surgical treatments associated with several potential complications and drawbacks. Recent studies have shown mesenchymal stem cell sheets may enhance bone regeneration in different animal models. We investigated the efficacy of implanted scaffold-free bone marrow-derived mesenchymal stem cell (BMSC) sheets on bone regeneration of a critical bone defect in a weight-bearing rat model.
View Article and Find Full Text PDFAnnulus fibrosus (AF) damage is proven to prompt intervertebral disc (IVD) degeneration, and unrepaired AF lesions after surgical discectomy may boost herniation of the nucleus pulposus (NP) which may lead to further compression of neural structures. Moreover, vascular and neural ingrowth may occur within the defect which is known as a possible reason for discogenic pain. Due to a limited healing capacity, an effective strategy to repair and close the AF defect is necessary.
View Article and Find Full Text PDFThough denosumab is an effective treatment for osteoporosis, the rebound effect after discontinuation has drawn investigators' attention. It includes a dramatic loss of gained bone mineral density (BMD) and an increased risk of vertebral fractures. This prospective multi-institutional randomized controlled trial aims to investigate whether zoledronate prevents loss of BMD after discontinuation of denosumab.
View Article and Find Full Text PDFBone defects of orthopedic trauma remain a challenge in clinical practice. Regarding bone void fillers, besides the well-known osteoconductivity of most bone substitutes, osteoinductivity has also been gaining attention in recent years. It is known that stromal cell-derived factor-1 (SDF-1) can recruit mesenchymal stem cells (MSCs) in certain circumstances, which may also play an important role in bone regeneration.
View Article and Find Full Text PDFIn clinical practice, bone defects still remain a challenge. In recent years, apart from the osteoconductivity that most bone void fillers already provide, osteoinductivity has also been emphasized to promote bone healing. Stromal-cell-derived factor-1 (SDF-1) has been shown to have the ability to recruit mesenchymal stem cells (MSCs), which play an important role in the bone regeneration process.
View Article and Find Full Text PDF