Fiber-optic distributed acoustic sensing (DAS) has proven to be a revolutionary technology for the detection of seismic and acoustic waves with ultralarge scale and ultrahigh sensitivity, and is widely used in oil/gas industry and intrusion monitoring. Nowadays, the single-frequency laser source in DAS becomes one of the bottlenecks limiting its advance. Here, we report a dual-comb-based coherently parallel DAS concept, enabling linear superposition of sensing signals scaling with the comb-line number to result in unprecedented sensitivity enhancement, straightforward fading suppression, and high-power Brillouin-free transmission that can extend the detection distance considerably.
View Article and Find Full Text PDFBiomarker detection is key to identifying health risks. However, designing sensitive and single-use biosensors for early diagnosis remains a major challenge. Here, we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors.
View Article and Find Full Text PDFMicrostructures can improve both sensitivity and assay time in heterogeneous assays (such as ELISA) for biochemical analysis; however, it remains a challenge to perform the essential wash process in those microstructure-based heterogeneous assays. Here, we propose a sequential bioconjugation protocol to solve this problem and demonstrate a new type of fiber optofluidic laser for biosensing. Except for acting as an optical microresonator and a microstructured substrate, the miniaturized hollow optical fiber (HOF) is used as a microfluidic channel for storing and transferring reagents thanks to its capability in length extension.
View Article and Find Full Text PDFThis publisher's note contains corrections to Opt. Lett.45, 3816 (2020)OPLEDP0146-959210.
View Article and Find Full Text PDFControl of the properties of speckle patterns produced by mutual interference of light waves is important for various applications of multimode optical fibers. It has been shown previously that a high signal-to-noise ratio in a multimode fiber can be achieved by preferential excitation of lower order spatial eigenmodes in optical fiber communication. Here we demonstrate that signal spatial coherence can be tailored by changing relative contributions of the lower and higher order multimode fiber eigenmodes for the research of speckle formation and spatial coherence.
View Article and Find Full Text PDFMemory-effect-based speckle correlation is one of the most practical techniques for imaging through scattering opaque media, where a light source with low spatial coherence and moderate bandwidth plays a pivotal role. Usually, a rapidly rotating diffuser is applied to make the light source spatially decoherent. Here, an all-fiber-based low-spatial-coherence light source is proposed and demonstrated for such speckle-correlated imaging.
View Article and Find Full Text PDFDisposable biosensors are of great importance in disease diagnosis due to their inherent merits of no cross-contamination and ease of use. Optofluidic laser (OFL) sensors are a new category of sensitive biosensors; however, it is challenging to cost-effectively mass-produce them to achieve disposability. Here, we report a disposable optofluidic laser immunosensor based on thin-walled hollow optical fibers (HOFs).
View Article and Find Full Text PDFA high-power multi-transverse modes random fiber laser (RFL) is investigated by combining a master oscillator power-amplifier (MOPA) configuration with a segment of extra-large mode area step-index multimode fiber (MMF). Spatial coherence of the high-power multi-transverse modes RFL has been analyzed, which shows that speckle contrast is reduced dramatically with the output power increasing. In this way, considerably low speckle contrast of ~0.
View Article and Find Full Text PDFTurbidimetric inhibition immunoassay (TIIA) is a classic immunodiagnostic method that has been extensively used for biomarker detection. However, the low sensitivity of this technique hinders its applications in the early diagnosis of diseases. Here, a new concept, optofluidic laser TIIA (OFL-TIIA), is proposed and demonstrated for sensitive protein detection.
View Article and Find Full Text PDFExciton-polaritons have shown great potential as a low-energy consumption and robust solid-state platform for photoelectronics integration and quantum information applications. Here, an all-optical method that uses the spin-sensitive optical Stark effect is proposed to manipulate exciton-polaritons for functional polaritonic operations. We use a Tamm plasmon and WS2 hybrid structure with a patterned transverse potential to form the channeled bright state of polaritons.
View Article and Find Full Text PDFSpeckle-free imaging is attractive in laser-illuminated imaging systems. The evolutionary process of supercontinuum decoherence in extra-large mode area step-index multimode fiber is analyzed to provide high-quality broadband light source for speckle-free imaging. It is found that spectral bandwidth, number of spatial transverse modes, and decoherence among different modes all greatly contribute to speckle reduction.
View Article and Find Full Text PDFOptofluidic lasers (OFLs) are an emerging technological platform for biochemical sensing, and their good performance especially high sensitivity has been demonstrated. However, high-throughput detection with an OFL remains a major challenge due to the lack of reproducible optical microcavities. Here, we introduce the concept of a distributed fibre optofluidic laser (DFOFL) and demonstrate its potential for high-throughput sensing applications.
View Article and Find Full Text PDFDisposable sensors are widely used in biomedical detection due to their inherent safety, ease of use and low cost. An optofluidic laser is a sensitive bioassay platform; however, demonstrating its fabrication cheaply and reproducibly enough for disposable use has been challenging. Here, we report a low-cost, reproducible fiber optofluidic laser (FOFL) using a microstructured optical fiber (MOF).
View Article and Find Full Text PDFThis letter reports a fiber-type random laser (RL) which is made from a capillary coated with a disordered layer at its internal surface and filled with a gain (laser dye) solution in the core region. This fiber-type optical structure, with the disordered layer providing randomly scattered light into the gain region and the cylindrical waveguide providing confinement of light, assists the formation of random lasing modes and enables a flexible and efficient way of making random lasers. We found that the RL is sensitive to laser dye concentration in the core region and there exists a fine exponential relationship between the lasing intensity and particle concentration in the gain solution.
View Article and Find Full Text PDFThis paper proposes a novel concept of refractive index sensing taking advantage of a high-refractive-index-contrast optical Tamm plasmon (OTP) structure, i.e., an air/dielectric alternate-layered distributed Bragg reflector (DBR) coated with metal.
View Article and Find Full Text PDFAn ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution.
View Article and Find Full Text PDFAn asymmetrical Fabry-Perot interferometric (AFPI) force sensor is fabricated based on a narrowband reflection of low-reflectivity fiber Bragg grating (LR-FBG) and a broadband Fresnel reflection of the cleaved fiber end. The AFPI sensor includes a section of microfiber made by tapering and it achieves a force sensitivity of 0.221 pm/μN with a tapered microfiber of 40 mm length and 6.
View Article and Find Full Text PDFA method for realizing low-threshold all-optical bistable logic control is proposed based on Tamm plasmons (TPs), which are formed in an asymmetric dielectric Bragg reflector (DBR)-metal-DBR (ADMD) structure with a layer of Kerr medium embedded. The ADMD structure supports two TPs due to coupling of trapped modes at each metal-DBR interface, generating two dips in the structure's reflection spectrum. Thus, control (i.
View Article and Find Full Text PDFA configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4 dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly.
View Article and Find Full Text PDFDistributed Raman amplification (DRA) based on ultra-long fiber laser (UL-FL) pumping with a ring cavity is promising for repeaterless transmission and sensing. In this work, the characteristics (including gain, nonlinear impairment and noise figure) for forward and backward pumping of the ring-cavity based DRA scheme are fully investigated. Furthermore, as a typical application of the proposed configuration, ultra-long-distance distributed sensing with Brillouin optical time-domain analysis (BOTDA) over 142.
View Article and Find Full Text PDFOptical fiber tweezers based on a graded-index multimode fiber (GIMMF) tip is proposed. Light propagation characteristics and gradient force distribution near the GIMMF tip are numerically investigated, which are further compared with that of optical fiber tips based on conventional single mode fibers. The simulated results indicated that by selecting optimal GIMMF length, the gradient force of the GIMMF tip tweezers is about 4 times higher than that of the SMF tip tweezers with a same shape.
View Article and Find Full Text PDFThe gain and noise characteristics of distributed Raman amplification (DRA) based on random fiber laser (RFL) (including forward and backward random laser pumping) have been experimentally investigated through comparison with conventional bi-directional 1st-order and 2nd-order pumping. The results show that, the forward random laser pumping exhibits larger averaged gain and gain fluctuation while the backward random laser pumping has lower averaged gain and nonlinear impairment under the same signal input power and on-off gain. The effective noise figure (ENF) of the forward random laser pumping is lower than that of the bi-directional 1st-order pumping by ~2.
View Article and Find Full Text PDFIn this paper, we reported the realization of 2nd-order random lasing in a half-opened fiber cavity, which is formed by a FBG with central wavelength at the 1st-order Raman Stokes wavelength and a single-mode fiber (SMF) performing as a random distributed feedback mirror. Using this proposed method, the threshold of 1st-order (2nd-order) random lasing is reduced to 0.7 (2.
View Article and Find Full Text PDFWe demonstrate an all-fiber optical Fabry-Perot interferometer (FPI) strain sensor whose cavity is a microscopic air bubble. The bubble is formed by fusion splicing together two sections of single-mode fibers (SMFs) with cleaved flat tip and arc fusion induced hemispherical tip, respectively. The fabricated interferometers are with bubble diameters of typically ~100 μm.
View Article and Find Full Text PDFWe present a refractive index (RI) sensor based on a fiber Mach-Zehnder interferometer (MZI) formed by two cascaded special long-period fiber gratings (LPFGs) with rotary refractive index modulation (RLPFGs), in which the coupling occurred between the guided mode and the high-order asymmetric cladding mode. The experimental results show that the RI sensitivity of a refractometer with an interaction length of 40 mm is up to 58.8 nm/RI in the range of 1.
View Article and Find Full Text PDF