Publications by authors named "Yun-Heub Song"

Article Synopsis
  • Phase-change materials like Ge-Sb-Te (GST) are used in PCRAM but face limitations due to a low ON/OFF ratio and high energy requirements for resetting.
  • This study presents CrN, a phase-change nitride that offers a significant improvement, achieving an ON/OFF ratio over 10 and reducing RESET energy needs by tenfold compared to GST.
  • CrN also demonstrates a rapid phase transition through the Soret effect, making it a promising candidate for next-generation PCRAM with fast operation and low energy consumption.
View Article and Find Full Text PDF
Article Synopsis
  • Data recording in phase-change materials (PCMs) generally requires a lot of energy, but strategies like heat confinement and reducing contact area can help.
  • CrGeTe (CrGT) stands out because it has low thermal conductivity and achieves lower energy memory operations, even with larger contact areas compared to traditional materials.
  • Simulations suggest that by minimizing the metastable phase after amorphization, further reductions in operation energy for CrGT devices can be attained.
View Article and Find Full Text PDF

The effect of gallium (Ga) concentration on the structural evolution of atomic-layer-deposited indium gallium oxide (IGO) (InGaO) films as high-mobility n-channel semiconducting layers was investigated. Different Ga concentrations in 10-13 nm thick InGaO films allowed versatile phase structures to be amorphous, highly ordered, and randomly oriented crystalline by thermal annealing at either 400 or 700 °C for 1 h. Heavy Ga concentrations above 34 atom % caused a phase transformation from a polycrystalline bixbyite to an amorphous IGO film at 400 °C, while proper Ga concentration produced a highly ordered bixbyite crystal structure at 700 °C.

View Article and Find Full Text PDF

We investigate the electrical characteristics according to changing temperature on trap distribution in the energy gap of grain boundary (GB) and interface trap density (D(it)) between polycrystalline-silicon (poly-Si) channel and tunnel oxide in Vertical NAND (VNAND) flash cell with poly-Si channel. We confirmed that there are two factors changing GB potential barrier height such as trap distribution in GB and D(it) using technology computer-aided design (TCAD) simulation. Also, we found that the electrical characteristics according to changing temperature are significantly dependent on height and position of GB potential barrier in VNAND flash cell with poly-Si channel.

View Article and Find Full Text PDF

Phase-change random access memory (PCRAM) has attracted much attention for next-generation nonvolatile memory that can replace flash memory and can be used for storage-class memory. Generally, PCRAM relies on the change in the electrical resistance of a phase-change material between high-resistance amorphous (reset) and low-resistance crystalline (set) states. Herein, we present an inverse resistance change PCRAM with CrGeTe (CrGT) that shows a high-resistance crystalline reset state and a low-resistance amorphous set state.

View Article and Find Full Text PDF

We investigated how surface roughness of a Ta/Ru buffer layer affects the degradation characteristics on MgO-based magnetic tunnel junctions (MTJs). MTJs with worse surface roughness on the buffer layer showed increased resistance drift and degraded time-dependent dielectric breakdown (TDDB) characteristics. We suggest that this resulted from reduced MgO thickness on the MTJ with worse surface roughness on the buffer layer, which was estimated by the TDDB and analytic approach.

View Article and Find Full Text PDF