Publications by authors named "Yun-He Luo"

Background: To explore an expression profile in plasma exosomal miRNAs of mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE + HS) patients and investigate the associated clinical significance and putative pathways involved.

Methods: Plasma exosomal miRNAs were measured in six mTLE + HS patients who were confirmed with pre-surgical stereo-electroencephalography and six without hippocampal sclerosis (mTLE-HS) using Illumina HiSeq 2500. Then six dysregulated miRNAs were chosen for validation in an independent sample of 18 mTLE + HS patients and 18 mTLE-HS controls using RT-qPCR.

View Article and Find Full Text PDF

The formation of intracranial aneurysm (IA) is associated with the destruction of various cellular and structural components, which induces pathogenic inflammatory responses that further propagate tissue damage. The regulatory immune system can suppress exacerbated inflammation and offer tissue protection; however, previous studies by others and us have demonstrated that the regulatory T (Treg) cells were functionally impaired in IA patients. Hence, strategies that can improve Treg function in IA patients should be investigated.

View Article and Find Full Text PDF

Pathogenic inflammation contributes to aneurysm formation by mediating the destruction of the endothelium and the extracellular matrix and promoting pathogenic proliferation of smooth muscle cells. In mouse models, tolerance-inducing T regulatory (Treg) cells could significantly reduce the incidence and severity of aneurysms. Hence, it should be investigated why in human intracranial aneurysm (IA) patients, Treg cells failed to provide protection against aneurysm formation.

View Article and Find Full Text PDF

Patients with intracranial aneurysm (IA) present a dysregulated immune system with lower frequency of regulatory T (Treg) cells. Here, we examined whether galectin 9 (Gal-9), the natural ligand of Tim-3, could promote Treg cells in IA patients. We first discovered that the intracellular and extracellular Gal-9 was primarily expressed by CD4 CD25 T conventional (Tconv) cells, and also by monocytes at lower levels, but rarely by CD4 CD25 Treg cells.

View Article and Find Full Text PDF