Developing high-performance nanomedicines to enhance antitumor efficacy remains a hot point in the field of biomedicine. In this study, we designed a versatile nanocomposite (FeS₂@COF-HA/AIPH) integrating covalent organic frameworks (COF) functionalized with pyrite (FeS₂) for synergistic photothermal (PTT), chemodynamic (CDT), thermodynamic (TDT) therapies, and immunotherapy. The superior photothermal effects and catalytic capabilities of FeS₂@COF enabled a minimally invasive PTT/CDT combination.
View Article and Find Full Text PDFCurrent therapeutic strategies for chronic refractory wounds remain challenge owing to their unfavorable wound microenvironment and poor skin regeneration ability. Thus far, a regimen for effective chronic refractory wounds management involves bacterial elimination, alleviation of oxidative stress, inhibition of inflammatory response, and promotion of angiogenesis. In this work, an injectable glycopeptide hydrogel based on phenylboronic acid-grafted ϵ-polylysine (EPBA) and poly (vinyl alcohol) (PVA) with pH/reactive oxygen species (ROS) dual-responsive properties was prepared, which exerted intrinsic antibacterial and antioxidant properties.
View Article and Find Full Text PDF