Publications by authors named "Yun-Feng Duan"

Agricultural soils are a significant source of anthropogenic nitrous oxide (NO) emissions, because of fertilizer application and decomposition of crop residues. We studied interactions between nitrogen (N) amendments and soil conditions in a 2-year field experiment with or without catch crop incorporation before seeding of spring barley, and with or without application of N in the form of digested liquid manure or mineral N fertilizer. Weather conditions, soil inorganic N dynamics, and NO emissions were monitored during spring, and soil samples were analyzed for abundances of nitrite reduction ( and ) and NO reduction genes ( clade I and II), and structure of nitrite- and NO-reducing communities.

View Article and Find Full Text PDF

Livestock slurry is a major source of atmospheric methane (CH), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH emissions. This study examined conditions for CH oxidation by in situ measurements of oxygen (O) and nitrous oxide (NO), as a proxy for inorganic N transformations, in intact crusts using microsensors. This was combined with laboratory incubations of crust material to investigate the effects of O, CH, and inorganic N on CH oxidation, using CH to trace C incorporation into lipids of MOB.

View Article and Find Full Text PDF

Unlabelled: Grassland cultivation can mobilize large pools of N in the soil, with the potential for N leaching and NO emissions. Spraying with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) before cultivation was simulated by use of soil columns in which the residue distribution corresponded to plowing or rotovation to study the effects of soil-residue contact on N transformations. DMPP was sprayed on aboveground parts of ryegrass and white clover plants before incorporation.

View Article and Find Full Text PDF

Livestock slurry is an important source of methane (CH). However, depending on the dry matter content of the slurry, a floating crust may form where methane-oxidizing bacteria (MOB) and CH oxidation activity have been found, suggesting that surface crusts may reduce CH emissions from slurry. However, it is not known how MOB in this environment interact with inorganic nitrogen (N).

View Article and Find Full Text PDF