Ventricular remodeling after myocardial infarction(VRAMI) is a pathological phenomenon triggered by the abrupt occlusion of coronary arteries, leading to myocardial ischemia and hypoxia. This intricate process encompasses alterations in the dimensions, composition, and elasticity of the ventricular tissue and reflects pathophysiological reactions and self-repair after cardiomyocytes are damaged. The characteristic pathological manifestation of VRAMI is the presence of myocardial fibrosis(MF), wherein fibrotic cardiac tissue undergoes a loss of contractile and relaxation capacity, ultimately culminating in heart failure(HF) and significantly impacting the patient's prognosis.
View Article and Find Full Text PDFAlthough pancreas and islet cell transplantation are the only ways to prevent the late complications of insulin-dependent diabetes, a shortage of donors is a major obstacle to tissue and organ transplantation. Stem cell therapy is an effective treatment for diabetes and other pancreatic-related diseases, which can be achieved by inducing their differentiation into insulin-secreting cells. The liver is considered an ideal source of pancreatic cells due to its similar developmental origin and strong regenerative ability as the pancreas.
View Article and Find Full Text PDFBackground: Cripto-1 (CR-1) has been reported to be involved in the development of several human cancers. The potential role of CR-1 in clear cell renal cell carcinoma (ccRCC) is still not clear.
Methods: CR-1 expression was evaluated in ccRCC tissues by Real-time quantitative PCR, Western blot and immunohistochemistry.
An asymmetric dehydrogenative Diels-Alder reaction of 2-methyl-3-phenylmethylindoles and α,β-unsaturated aldehydes has been established. The successful in situ generation of the indole ortho-quinodimethane intermediate and the iminium activation of enals are the keys to success, providing various tetrahydrocarbazole derivatives with up to >99% ee.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
November 2009
A rapid and non-invasive method was put forward to measure the purity of hybrid rice seed by visible-near infrared reflectance spectra. Ninety hybrid rice seed samples (Yixiang 725) with the purity of 90%-99% were collected using a FieldSpec 3 visible-near infrared spectometer. All samples were divided randomly into two groups, one group with 75 samples used as calibrated set, and the other with 15 samples used as validated set.
View Article and Find Full Text PDF