Publications by authors named "Yun-Fei Diao"

Asiatic acid is a natural triterpene found in Centella asiatica that acts as an effective free radical scavenger. Our previous research showed that asiatic acid delayed porcine oocyte ageing in vitro and improved preimplantation embryo development competence in vitro; however, the protective effects of asiatic acid against oxidative stress in porcine oocyte maturation are still unclear. Here, we investigated the effects of asiatic acid on porcine oocyte in vitro maturation (IVM) and subsequent embryonic development competence after parthenogenetic activation (PA) and in vitro fertilization (IVF).

View Article and Find Full Text PDF
Article Synopsis
  • Asiatic acid (AA), a pentacyclic triterpene, is an antioxidant that shows promise in improving the quality of aging porcine oocytes during a process mimicking aging (IVA).
  • Research found that AA supplementation significantly reduced abnormalities in aged oocytes and helped maintain their ability to develop after fertilization.
  • AA also countered oxidative stress, preserved crucial cellular functions like ATP production, and decreased early apoptosis rates in these aged oocytes.
View Article and Find Full Text PDF

Asiatic acid is a pentacyclic triterpene enriched in the medicinal herb Centella asiatica, and it has been suggested to possess free radical scavenging and anti-apoptotic properties. The purpose of the current study was to explore the effects of asiatic acid on porcine early-stage embryonic development and the potential mechanisms for any observed effects. The results showed that 10 μM asiatic acid supplementation during the in vitro culture period dramatically improved developmental competence in porcine embryos derived from parthenogenetic activation (PA), somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF).

View Article and Find Full Text PDF

SETD2 (SET domain containing protein 2) acts as a histone H3 lysine 36 (H3K36)-specific methyltransferase and may play important roles in active gene transcription in human cells. However, its expression and role in porcine oocytes and preimplantation embryos are not well understood. Here, we used immunofluorescence and laser scanning confocal microscopy to examine SETD2 expression in porcine fetal fibroblasts, oocytes, and preimplantation embryos derived from in vitro fertilization (IVF), parthenogenetic activation (PA), and somatic cell nuclear transfer (SCNT).

View Article and Find Full Text PDF

Evaporative drying (ED) is an alternative technique for long-term preservation of mammalian sperm, which does not require liquid nitrogen or freeze-drying equipment, but offers advantages for storage and shipping at ambient temperature and low cost. However, the development of zygotes generated from these sperms was poor. Here, we demonstrated that the supplementation of tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, during embryo culture improved the developmental competency of embryos derived from in vitro matured pig oocytes injected intracytoplasmically with boar ED spermatozoa by reducing the production of reactive oxygen species, the DNA degradation and fragmentation, and the expression of apoptosis-related gene Bax and Bak, and by increasing the transcription of anti-apoptosis gene Bcl-XL and Bcl-2.

View Article and Find Full Text PDF

We previously demonstrated that tauroursodeoxycholic acid (TUDCA) improved the developmental competence of mouse embryos by attenuating endoplasmic reticulum (ER) stress-induced apoptosis during preimplantation development. Here, we present a follow-up study examining whether TUDCA enhances the implantation and live-birth rate of mouse embryos. Mouse 2-cell embryos were collected by oviduct flushing and cultured in the presence or absence of 50 μM TUDCA.

View Article and Find Full Text PDF

The effects of different denuding procedures used during the in vitro culture of porcine embryos on oocyte damage and aspects of porcine embryo development were investigated in a series of studies. Oocytes were denuded by vortexing or pipetting after 44h in vitro maturation (IVM) or pre-denuded after 22h IVM. The total oocyte death rate was significantly (P<0.

View Article and Find Full Text PDF

Histone H3 lysine 36 (H3K36) methylation is known to be associated with transcriptionally active genes, and is considered a genomic marker of active loci. To investigate the changes in H3K36 methylation in pig, we determined the mono-, di-, and tri-methylations of H3K36 (H3K36me1, H3K36me2 and H3K36me3, respectively) in porcine fetal fibroblasts, oocytes and preimplantation embryos by immunocytochemistry using specific antibodies and confocal microscopy. These analyses revealed that only H3K36me3 in porcine fetal fibroblasts consistently colocalized with transcription sites identified as actively synthesizing RNA based on fluorouridine (FU) incorporation.

View Article and Find Full Text PDF

In the present study, a porcine system was supplemented with sorbitol during in vitro maturation (IVM) or in vitro culture (IVC), and the effects of sorbitol on oocyte maturation and embryonic development following parthenogenetic activation were assessed. Porcine immature oocytes were treated with different concentrations of sorbitol during IVM, and the resultant metaphase II stage oocytes were activated and cultured in porcine zygote medium-3 (PZM-3) for 7 days. No significant difference was observed in cumulus expansion and the nuclear maturation between the control and sorbitol-treated groups, with the exception of the 100 mM group, which showed significantly decreased nuclear maturation and cumulus expansion.

View Article and Find Full Text PDF

To determine whether chromosomes in the porcine first polar body (PB1) can complete the second meiotic division and subsequently undergo normal pre-implantation embryonic development, we examined the developmental competence of PB1 chromosomes injected into enucleated MII stage oocytes by nuclear transfer method (chromosome replacement group, CR group). After parthenogenetic activation (PA) or in vitro fertilization (IVF), the cleavage rate of reconstructed oocytes in the IVF group (CR-IVF group, 36.4 ± 3.

View Article and Find Full Text PDF

This study investigated whether treating fetal fibroblast cells (donor cells) with epigenetic modification-inducing drugs could improve the development of porcine cloned embryos. Donor cells were treated with different DNA methylation inhibitors (5-aza-dC, zebularine or RG108; 5nM) or histone deacetylase inhibitors (TSA, NaBu or SCR; 50nM) for 1h, and then subjected to SCNT. All of the treated groups showed significantly higher blastocyst formation rates compared to the control group.

View Article and Find Full Text PDF

Background: Germ cells differentiate into oocytes in females and are arrested at the first meiotic prophase. However, during arrest, oocytes undergo a growth phase leading to a dramatic increase in size, which is under control of transcription events. In the current study, we examined the transcriptional activity of growing pig oocytes using an immunocytochemical approach.

View Article and Find Full Text PDF

X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature oocyte spindles and abundant in the nucleus at the germinal vesicle (GV) stage.

View Article and Find Full Text PDF

Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD).

View Article and Find Full Text PDF

Bovine pregnancy is commonly diagnosed by rectal palpation or ultrasonography and changes in progesterone concentration. To determine a simpler and less expensive diagnostic method, we sought to identify early pregnancy-specific proteins in bovine milk by comparing samples collected from pregnant and non-pregnant Holstein cattle. Of the 600-700 protein spots visible on 2-DE gel images, 39 were differentially expressed in milk from pregnant and non-pregnant cattle.

View Article and Find Full Text PDF

X-box-binding protein 1 (XBP1) is an important regulator of a subset of genes active during endoplasmic reticulum (ER) stress. In the present study, we analyzed XBP1 level and location to explore the effect of ER stress on oocyte maturation and developmental competency of porcine embryos in an in vitro culture system. First, we examined the localization of XBP1 at different meiotic stages of porcine oocytes and at early stages of parthenogenetic embryo development.

View Article and Find Full Text PDF

Reprogramming errors, which appear frequently in cloned animals, are reflected by aberrant gene expression. We previously reported the aberrant expression of TIMP-2 and PBEF in cloned placenta and differential expression of PBEF genes during pregnancy. To examine the epigenetic modifications that regulate dynamic gene expression in developing placentae, we herein analyzed the mRNA and protein expression levels of PBEF and TIMP-2 in the placentae of normal mice during pregnancy and then examined potential correlations with epigenetic modifications.

View Article and Find Full Text PDF