The nonlinear Landau-Zener-Stückelberg-Majorana (LZSM) tunneling dynamics and interferometry of an extended Bose-Hubbard flux ladder are studied. Based on the mean-field theory, the dispersion relation of the system is given, and it is found that loop structures periodically appear in the band structure and the nonlinear LZSM interference occurs naturally without Floquet engineering, which can be effectively modulated by atomic interactions. The nonlinear energy bands and the unique chirality feature of the flux ladder system can be identified through the dynamics of nonlinear Landau-Zener tunneling.
View Article and Find Full Text PDF