Publications by authors named "Yun-Dan Liu"

Exploring economical, efficient, and stable electrocatalysts for the seawater hydrogen evolution reaction (HER) is highly desirable but is challenging. In this study, a Mo cation doped NiSe/MoSe heterostructural electrocatalyst, Mo-NiSe/MoSe, was successfully prepared by simultaneously doping Mo cations into the NiSe lattice (Mo-NiSe) and growing atomic MoSe nanosheets epitaxially at the edge of the Mo-NiSe. Such an Mo-NiSe/MoSe catalyst requires only 110 mV to drive current densities of 10 mA cm in alkaline simulated seawater, and shows almost no obvious degradation after 80 h at 20 mA cm.

View Article and Find Full Text PDF

The low-cost room-temperature sodium-sulfur battery system is arousing extensive interest owing to its promise for large-scale applications. Although significant efforts have been made, resolving low sulfur reaction activity and severe polysulfide dissolution remains challenging. Here, a sulfur host comprised of atomic cobalt-decorated hollow carbon nanospheres is synthesized to enhance sulfur reactivity and to electrocatalytically reduce polysulfide into the final product, sodium sulfide.

View Article and Find Full Text PDF

Room-temperature sodium-sulfur batteries are competitive candidates for large-scale stationary energy storage because of their low price and high theoretical capacity. Herein, pure S nanosheet cathodes can be grown in situ on three-dimensional Cu foam substrate with the condensation between binary polymeric binders, serving as a model system to investigate the formation and electrochemical mechanism of unique S nanosheets on the Cu current collectors. On the basis of the confirmed conversion reactions to NaS, The constructed cathode exhibits ultrahigh initial discharge/charge capacity of 3189/1403 mAh g.

View Article and Find Full Text PDF