Water quality forecasting can provide useful information for public health protection and support water resources management. In order to forecast water quality more accurately, this paper proposes a novel hybrid model by combining data decomposition, fuzzy C-means clustering and bidirectional gated recurrent unit. Firstly, the original water quality data is decomposed into several subseries by empirical wavelet transform, and then, the decomposed subseries are recombined by fuzzy C-means clustering.
View Article and Find Full Text PDF