To explore the rate variation and contribution to N loss of denitrification and anaerobic ammonia oxidation (ANAMMOX) in the nitrogen migration process of farmland soils in southern China, we assess the physicochemical characteristics soil samples of different soil layers from farmland and different land use types (farmland, river channel, riparian zone, and lake sediment) in a wheat-rice rotation area of Wanshandang Lake. Illumina MiSeq sequencing and quantitative real-time polymerase chain reaction (qPCR) are used to investigate the microbial community composition and functional gene abundances of the samples. The potential denitrification and ANAMMOX rate (calculated by N) of each sample was determined by an isotope culture experiment.
View Article and Find Full Text PDFAnaerobic ammonium oxidation mediated by MnO (termed Mn-ANAMMOX) is a newly discovered microbial nitrogen removal pathway. However, few studies have reported on the Mn-ANAMMOX process and related microbial communities in agricultural drainage ditches. In this study, Mn(Ⅳ)-reducing bacteria (MnBR) enrichment cultivation was carried out for 340 days and an isotope tracing technique and high-throughput sequencing technology were used to provide convincing evidence of the occurrence of Mn-ANAMMOX.
View Article and Find Full Text PDFAnaerobic ammonium oxidation coupled to iron (Ⅲ) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via the Feammox process in riparian zones. In this study, evidence of Feammox in the riparian zone soil layers (0-20 cm) was demonstrated using the isotope tracing technique and a high-throughput sequencing technology.
View Article and Find Full Text PDF