Patients with type II diabetes exhibit fibrillar deposits of human amylin protein in the pancreas. It has been proposed that amylin oligomers arising along the aggregation or fibril-formation pathways are important in the genesis of the disease. In a step toward understanding these aggregation pathways, in this work we report the conformational preferences of human amylin monomer in solution using molecular simulations and infrared experiments.
View Article and Find Full Text PDFThe 37-residue human islet amyloid polypeptide (hIAPP or amylin) self-assembles into fibers, the assembly of which has been associated with the disease mechanism of type II diabetes. Infrared spectroscopy in conjunction with isotope labeling is proving to be a powerful tool for studying the aggregation process of hIAPP and other amyloid forming proteins with residue specific structure and kinetic information, but the relationship between the spectroscopic observables and the structure is not fully established. We report a detailed analysis of the linear and 2D IR spectra of hIAPP fibers isotope labeled at seven different residue positions.
View Article and Find Full Text PDFThere is considerable interest in uncovering the pathway of amyloid formation because the toxic properties of amyloid likely stems from prefibril intermediates and not the fully formed fibrils. Using a recently invented method of collecting 2-dimensional infrared spectra and site-specific isotope labeling, we have measured the development of secondary structures for 6 residues during the aggregation process of the 37-residue polypeptide associated with type 2 diabetes, the human islet amyloid polypeptide (hIAPP). By monitoring the kinetics at 6 different labeled sites, we find that the peptides initially develop well-ordered structure in the region of the chain that is close to the ordered loop of the fibrils, followed by formation of the 2 parallel beta-sheets with the N-terminal beta-sheet likely forming before the C-terminal sheet.
View Article and Find Full Text PDFIslet amyloid polypeptide (IAPP, also known as amylin) is responsible for pancreatic amyloid deposits in type 2 diabetes. The deposits, as well as intermediates in their assembly, are cytotoxic to pancreatic beta-cells and contribute to the loss of beta-cell mass associated with type 2 diabetes. The factors that trigger islet amyloid deposition in vivo are not well understood, but peptide membrane interactions have been postulated to play an important role in islet amyloid formation.
View Article and Find Full Text PDFAmyloid forming proteins have been implicated in many human diseases. The kinetics of amyloid fiber formation are of particular interest because evidence points to intermediate folding structures as potential cytotoxic species. The standard methods for monitoring the kinetics are to use fluorescence or circular dichroism spectroscopy, which do not uniquely resolve secondary structures.
View Article and Find Full Text PDFThe capability of 2D IR spectroscopy to elucidate time-evolving structures is enhanced by a programmable mid-IR pulse shaper that greatly improves the ease, speed, and accuracy of data collection. Traditional ways of collecting 2D IR spectra are difficult to implement, cause distorted peak shapes, and result in poor time resolution and/or phase problems. We report on several methods for collecting 2D IR spectra by using a computer-controlled germanium acoustooptic modulator that overcomes the above problems.
View Article and Find Full Text PDF