Publications by authors named "Yun Jeong Cha"

2D DNA microstructures are fabricated by applying the shear force to the DNA solution on the microchannels. The "U"-like textures of DNA are clearly observed when the mechanical shearing is applied on the aqueous DNA sample under the topographic confinement, in which the shearing direction is perpendicular to the grooves. The optical textures of U-like microstructures are directly observed by polarized optical microscopy (POM) and laser scanning fluorescent confocal polarizing microscopy (FCPM).

View Article and Find Full Text PDF

DNA is a common biomaterial in nature as well as a good building block for producing useful structures, due to its fine feature size and liquid crystalline phase. Here, we demonstrate that a combination of shear-induced flow and microposts can be used to create various kinds of interesting microstructure DNA arrays. Our facile method provides a platform for forming multi-scale hierarchical orientations of soft- and biomaterials, using a process of simple shearing and controlled evaporation on a patterned substrate.

View Article and Find Full Text PDF

Thin films made of deoxyribonucleic acid (DNA), dissolved in an aqueous solution, and cetyltrimethyl-ammonium-modified DNA (CDNA), dissolved in an organic solvent, utilising multiwall carbon nanotubes (MWCNTs) are not yet well-understood for use in optoelectronic device and sensor applications. In this study, we fabricate MWCNT-integrated DNA and CDNA thin films using the drop-casting method. We also characterise the optical properties (i.

View Article and Find Full Text PDF

Despite the importance of nanofluidic transmission electron microscope (TEM) chips, a simple fabrication method has yet to be developed due to the difficulty of wafer bonding techniques using a nanoscale thick bonding layer. We present a simple and robust wafer scale bonding technique using parylene as a bonding layer. A nanoscale thick parylene layer was deposited on a silicon nitride (SiN) wafer and patterned to construct nanofluidic channels.

View Article and Find Full Text PDF

Lyotropic chromonic liquid crystals (LCLCs) have been extensively studied because of the interesting structural characteristics of the linear aggregation of their plank-shaped molecules in aqueous solvents. We report a simple method to control the orientation of LCLCs such as Sunset Yellow (SSY), disodium cromoglycate (DSCG), and DNA by varying pulling speed of the top substrate and temperatures during shear flow induced experiment. Crystallized columns of LCLCs are aligned parallel and perpendicular to the shear direction, at fast and slow pulling speeds of the top substrate, respectively.

View Article and Find Full Text PDF

Nanomaterials are extensively used in consumer products and medical applications, but little is known about their environmental and biological toxicities. Moreover, the toxicity analysis requires sophisticated instruments and labor-intensive experiments. Here we report a microfluidic chip incorporated with the nematode Caenorhabditis elegans that rapidly displays the changes in body growth and gene expression specifically responsive to the silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

A periodic zigzag structure of DNA material is successfully fabricated by a simple shearing method. The periodicity of the pattern can be finely controlled by combining the mechanical shearing method with topographic patterns of microchannels. The resultant zigzag patterns can be used as a template to control the alignment of rod-like liquid crystals due to its highly regular periodicity.

View Article and Find Full Text PDF

The direct transfer of graphene using polydimethylsiloxane (PDMS) stamping has advantages such as a 'pick-and-place' capability and no chemical residue problems. However, it is not easy to apply direct PDMS stamping to graphene grown via chemical vapor deposition on rough, grainy metal surfaces due to poor contact between the PDMS and graphene. In this study, graphene consisting of a mixture of monolayers and multiple layers grown on a rough Ni surface was directly transferred without the use of an adhesive layer.

View Article and Find Full Text PDF

Self-assembly of soft materials attracts keen interest for patterning applications owing to its ease and spontaneous behavior. We report the fabrication of nanogrooves using sublimation and recondensation of liquid crystal (LC) materials. First, well-aligned smectic LC structures are obtained on the micron-scale topographic patterns of the microchannel; then, the sublimation and recondensation process directly produces nanogrooves having sub-200-nm scale.

View Article and Find Full Text PDF

Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs) on the surface of cellulose nanofibers.

View Article and Find Full Text PDF

Chitin is one of the most abundant biomaterials in nature, with 10(10) tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.

View Article and Find Full Text PDF

Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation.

View Article and Find Full Text PDF

The orientation control of soft matter to create a large area single domain is one of the most exciting research topics in materials science. Recently, this effort has been extended to fabricate two- or three-dimensional structures for electro-optical applications. Here, we create periodic zigzag structures in liquid crystals (LCs) using a combination of surface treatment and thermal annealing.

View Article and Find Full Text PDF

The B4 helical nanofilament (HNF) liquid crystal (LC) phase is a three-dimensional (3D) helical structure composed of 2D smectic layers. Because of the complex shape of the HNF phase, it is difficult to understand the generation mechanism of HNFs in the bulk as well as in the thin-film condition. Here, we directly investigated the nucleation and growth of HNFs in nanobowls.

View Article and Find Full Text PDF

This study investigates the antifungal activity of a polymer integrated with nano-porous charcoal particles against Paecilomyces variotii, Chaetomium globosum, Trichoderma virens, which are all filamentous fungi. The charcoal polymers were prepared by combining charcoal powders with plastic resin under a vacuum to form charcoal particle protrusions on the polymer surface. The mycelial growth of P.

View Article and Find Full Text PDF

We successfully fabricated the in-plane switching mode (IPS) LC display (LCD) based on a double stranded DNA (dsDNA) alignment layer. As widely known, the DNA has the right-handed double helical structure that has naturally grown grooves with a very regular period, which can be used as an alignment layer to control the orientation of liquid crystal (LC) molecules. The LC molecules on this topographical layer of DNA material align obliquely at a specific angle with respect to the direction of DNA chains, providing an instant and convenient tool for the fabrication of the IPS display compared to the conventional ways such as rubbing and mechanical shearing methods.

View Article and Find Full Text PDF

Although a number of manufactured nanoparticles are applied for the medical and clinical purposes, the understanding of interaction between nanomaterials and biological systems are still insufficient. Using nematode Caenorhabditis elegans model organism, we here investigated the in vivo toxicity or safety of hydroxylated fullerene nanoparticles known to detoxify anti-cancer drug-induced oxidative damages in mammals. The survival ratio of C.

View Article and Find Full Text PDF