Biochem Biophys Res Commun
January 2013
Since pheochromocytoma 12 (PC12) cells have the ability of neuronal differentiation upon nerve growth factor (NGF) treatment, they are a good model for studying the neuronal differentiation. Establishing a strong adhesion of PC12 cells to the culture substrate may increase neuronal differentiation, and the use of L-3,4-dihydroxyphenylalanine (L-DOPA), which is responsible for the adhesive property of mussel adhesive proteins (MAPs), is a feasible strategy for such strong adhesion. We hypothesized that a polydopamine-modified surface can promote PC12 cell adhesion and subsequent neuronal differentiation.
View Article and Find Full Text PDFNerve growth factor (NGF) immobilization on a culture substrate may dramatically reduce the amount of NGF required for pheochromocytoma (PC12) cell culture. Coverslips on which NGF had been immobilized, or with NGF added to the culture medium daily, were used to culture PC12 cells. We examined the effects of adding 5, 10, or 100 ng of NGF to cultures daily, and compared them to the effects of immobilizing 5, 10, or 100 ng of NGF on culture substrates in a single dose.
View Article and Find Full Text PDFIn this study, we tested the hypothesis that the amount of nerve growth factor (NGF) required for pheochromocytoma (PC12) cell culture can be dramatically reduced by controlled release of NGF from a collagen gel coating on the culture surface. Cells were cultured on collagen gels loaded with various amounts of NGF. As a control, PC12 cells were cultured on collagen gels with daily addition of various amounts of NGF to the culture medium.
View Article and Find Full Text PDFNerve growth factor (NGF) is known to promote the axonal regeneration in injured nerve system. Delivery of NGF for a long period in a controlled manner may enhance the regeneration efficacy. In this study, we investigated whether NGF can be released from fibrin gel for a long period in a controlled manner.
View Article and Find Full Text PDF