Publications by authors named "Yun Hang Hu"

The global number of trees is approximately 3 trillion, covering 31% of the land area. Trees are considered a cheap, abundant, renewable, and environmentally friendly feedstock for producing advanced structural and functional materials toward a widespread application in sustainable energy and environment. In this highlight, we reveal the structure and composition of wood, leaves, and tree extracts, and then highlight the strategies to control their hierarchical structures and properties.

View Article and Find Full Text PDF

Plastic wastes continuously accumulate, causing critical environmental issues. It is urgent to develop efficient strategies to convert them to valuable products. Very recently, two novel approaches for plastic recycling were reported by Huber et al.

View Article and Find Full Text PDF

Carbonate-superstructured solid fuel cells (CSSFCs) are an emerging type of fuel cells with high flexibility of fuels. However, using ethane fuel for solid fuel cells is a great challenge due to serious degradation of their anodes. Herein, this critical issue is solved by creating a novel gradient functional layer anode for CSSFCs.

View Article and Find Full Text PDF

Metal- and nitrogen-doped carbon (M-N-C) is a promising material to catalyze electrochemical CO reduction reaction (CORR). However, most M-N-C catalysts in the literature require complicated synthesis procedures and produce small quantities per batch, limiting the commercialization potential. In this work, we developed a simple and scalable synthesis method to convert metal-impurity-containing commercial carbon nanotubes (CNTs) and nitrogen-containing organic precursors into M-N-C via one-step moderate-temperature (650 °C) pyrolysis without any other treatment nor the need to add metal precursors.

View Article and Find Full Text PDF

Converting hydrocarbons and greenhouse gases (i.e., carbon dioxide, CO) directly into electricity through fuel cells at intermediate temperatures (450 to 550 °C) remains a significant challenge, primarily due to the sluggish activation of C-H and C=O bonds.

View Article and Find Full Text PDF

As a distinct type of fuel cell, a carbonate-superstructured solid fuel cell (CSSFC), which possesses excellent performance and easy fabrication as well as low cost, was recently invented by our group. Herein, we demonstrated the critical role of the in-situ-generated eutectic carbonate phase in CSSFC. Namely, the in-situ generation of eutectic LiCO/NaCO system increased the oxygen ionic conductivity of CeSmO solid electrolyte by 20 times (from 3.

View Article and Find Full Text PDF

2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR.

View Article and Find Full Text PDF

The van der Waals (vdW) assemblies are the most common structures of materials. However, direct mapping of intermolecular electron clouds of a vdW assembly has never been obtained, even though the intramolecular electron clouds were visualized by atomic-resolution techniques. In this report, we unprecedentedly mapped the intermolecular electron cloud of the assemblies of ethanol molecules via ethyl groups with high-resolution atomic force microscopy and scanning tunneling microscopy at 5 K, leading to the first visualization of vdW molecular chains, in which ethanol molecules assemble into twin vdW molecular chains in a reverse parallel configuration on the Ag(111) plane.

View Article and Find Full Text PDF

Plastics have been widely used in daily life and industries due to their low cost and high durability, leading to huge production of plastics and tens of millions of plastic wastes every year. Chemical recycling can recycle contaminated and degraded plastics (that mechanical recycling cannot deal with) to obtain value-added products, which potentially solves the environmental problems caused by plastics and realizes a circular economy. Alkaline earth metal oxides, as a category of cost-effective and multi-functional materials, have been widely used in chemical recycling of common plastics, acting as three roles: catalyst, template, and absorbent.

View Article and Find Full Text PDF

The heavy metal pollution constitutes a critical environmental issue. This has stimulated intensive efforts to develop treatment techniques for their removal from wastewater, including adsorption, membrane separation, precipitation/electrodeposition, ion exchange, coagulation-flocculation, flotation/electroflotation, solvent extraction, catalysis, and bioremediation. This article provides a comprehensive review on the advances in those techniques with the focus on the recent decade (2013-2023).

View Article and Find Full Text PDF

The sp-hybridized carbon chain (carbyne) is a representative 1D atomic material, whose bonding structure and chemical reactivity have remained a mystery for a century. Here, we report the unexpected alternating bond orders of 1.4 and 2.

View Article and Find Full Text PDF

Three-dimensional (3D) graphene is one of the most important nanomaterials. This feature article highlights the advancements, with an emphasis on contributions from our group, in the synthesis of 3D graphene-based materials and their utilization in solar cells. Chemistries of graphene oxides, hydrocarbons, and alkali metals are discussed for the synthesis of 3D graphene materials.

View Article and Find Full Text PDF

High areal capacitance for a practical supercapacitor electrode requires both large mass loading and high utilization efficiency of electroactive materials, which presents a great challenge. Herein, we demonstrated the unprecedented synthesis of superstructured NiMoO@CoMoO core-shell nanofiber arrays (NFAs) on a Mo-transition-layer-modified nickel foam (NF) current collector as a new material, achieving the synergistic combination of highly conductive CoMoO and electrochemical active NiMoO. Moreover, this superstructured material exhibited a large gravimetric capacitance of 1,282.

View Article and Find Full Text PDF

Large numbers of leaves fall on the earth each autumn. The current treatments of dead leaves mainly involve completely destroying the biocomponents, which causes considerable energy consumption and environmental issues. It remains a challenge to convert waste leaves into useful materials without breaking down their biocomponents.

View Article and Find Full Text PDF

Converting waste plastic into valuable carbon materials as the electrode for supercapacitors represents a sustainable way to deal with the severe waste plastic-related environmental issues. However, ideal carbon materials for supercapacitors require not only a large specific surface area but also abundant meso/macropores, which is still challenging for conventional synthesis methods. Herein, MgO-templated pyrolysis with chemical activation was demonstrated as an effective approach to convert waste polyethylene terephthalate (PET) plastic bottles into 3D meso/macroporous carbon (MMPC) with both large total surface area (1863.

View Article and Find Full Text PDF
Article Synopsis
  • Capturing carbon dioxide (CO) is really important, but the current technologies are slow at doing it.
  • Researchers created a new type of material called MgO nanoparticles that work better and faster for capturing CO.
  • Using this new material, they found that it can improve CO capturing efficiency a lot and can be used many times without breaking down.
View Article and Find Full Text PDF

Sodium hydride (NaH) was unprecedently embedded inside graphene nanobubbles via the discovered reaction between NaH and CO. With the graphene nanobubble as a nanoreactor for NaH, we directly observed the electron-beam-induced decomposition process of graphene-covered NaH by high-resolution transmission electron microscopy with energy dispersive spectrometry and electron energy loss spectroscopy, revealing its decomposition mechanism. This can provide guidance for the design of hydrogen storage materials.

View Article and Find Full Text PDF

Zinc oxide (ZnO), which is widely applied for ultraviolet-light driven photocatalysis, has no activity in visible-light photocatalytic process due to its large band gap of ∼3.2 eV. Herein, however, we demonstrated the multiple self-promotion effects of tetracycline as band adjuster, photo-sensitizer, and charge transfer promoter for ZnO nanorods, realizing its visible-light photocatalytic degradation with an excellent removal efficiency up to 91.

View Article and Find Full Text PDF

A basic requirement for solid oxide fuel cells (SOFCs) is the sintering of electrolyte into a dense impermeable membrane to prevent the mixing of fuel and oxygen for a sufficiently high open-circuit voltage (OCV). However, herein, we demonstrate a different type of fuel cell, a carbonate-superstructured solid fuel cell (CSSFC), in which in situ generation of superstructured carbonate in the porous samarium-doped ceria layer creates a unique electrolyte with ultrahigh ionic conductivity of 0.17 S⋅cm at 550 °C.

View Article and Find Full Text PDF

Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis.

View Article and Find Full Text PDF

Carbon dioxide (CO) hydrogenation can not only mitigate global warming, but also produce value-added chemicals. Herein, we report a novel three-phase catalytic system with an generated and dynamically updated thin water film covered on the noble-metal-free TiO-based catalyst for highly efficient CO hydrogenation, realizing a four-time enhancement compared with that with the catalyst suspended in water. The water film plays dual roles by directly participating in the reaction and removing the produced oxygenates (mainly formic acid) from the catalyst surface by dissolution.

View Article and Find Full Text PDF

The utilization of visible light for direct photocatalytic methane conversion remains a huge challenge. Here, we developed a thermo-photo catalytic process with a visible-light-responsive Pt/WO catalyst and realized highly efficient visible-light driven methane conversion for the first time. The conversion efficiency was enhanced by 4.

View Article and Find Full Text PDF

Photocatalytic ethane conversion into value-added chemicals is a great challenge especially under visible light irradiation. The production of ethyl hydroperoxide (CHCHOOH), which is a promising radical reservoir for regulating the oxidative stress in cells, is even more challenging due to its facile decomposition. Here, we demonstrated a design of a highly efficient visible-light-responsive photocatalyst, Au/WO, for ethane oxidation into CHCHOOH, achieving an impressive yield of 1887 μmol g in two hours under visible light irradiation at room temperature for the first time.

View Article and Find Full Text PDF

Catalysts play a critical role in the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) for energy storage, conversion, and utilization. Herein, first-principles density functional theory (DFT) calculations demonstrated that single-metal-atom (Fe, Co, or Ni) sites can bind to the surface of 2D WO2, enhancing the adsorption of intermediates involved in the OER/ORR. Furthermore, it was found that the single-metal-atom-doped 2D WO2 achieves the smallest OER and ORR overpotentials of 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5k1j0rb9kl5564lsjbu0i560tu853s0j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once