Background: The arterial stiffening is attributed to the intrinsic structural stiffening and/or load-dependent stiffening by increased blood pressure (BP). The respective lifetime alterations and major determinants of the two components with normal aging are not clear.
Methods: A total of 3053 healthy adults (1922 women) aged 18-79 years were enrolled.
Background: Persistent challenges associated with misdiagnosis and underdiagnosis of coronary microvascular disease (CMVD) necessitate the exploration of noninvasive imaging techniques to enhance diagnostic accuracy. Therefore, we aimed to integrate multimodal imaging approaches to achieve a higher diagnostic rate for CMVD using high-quality myocardial metabolism imaging (MMI) and myocardial contrast echocardiography (MCE). This combination diagnostic strategy may help address the urgent need for improved CMVD diagnosis.
View Article and Find Full Text PDFBackground: Carotid intima-media thickness (IMT) and diameter, stiffness, and wave reflections, are independent and important clinical biomarkers and risk predictors for cardiovascular diseases. The purpose of the present study was to establish nationwide reference values of carotid properties for healthy Chinese adults and to explore potential clinical determinants.
Methods: A total of 3053 healthy Han Chinese adults (1922 women) aged 18-79 years were enrolled at 28 collaborating tertiary centers throughout China between April 2021 and July 2022.
Current guidelines encourage large studies in a diverse population to establish normal reference ranges for three-dimensional (3D) echocardiography for different ethnic groups. This study was designed to establish the normal values of 3D-left ventricular (LV) and left atrial (LA) volume and function in a nationwide, population-based cohort of healthy Han Chinese adults. A total of 1117 healthy volunteers aged 18-89 years were enrolled from 28 collaborating laboratories in China.
View Article and Find Full Text PDFThree-dimensional (3D) echocardiography is an emerging technique for assessing right ventricular (RV) volume and function, but 3D-RV normal values from a large Chinese population are still lacking. The aim of the present study was to establish normal values of 3D-RV volume and function in healthy Chinese volunteers. A total of 1117 Han Chinese volunteers from 28 laboratories in 20 provinces of China were enrolled, and 3D-RV images of 747 volunteers with optimal image quality were ultimately analyzed by a core laboratory.
View Article and Find Full Text PDFTo compare the merits and drawbacks of three approaches for establishing a rabbit model of nonobstructive coronary microcirculatory disease, namely, open thoracic subtotal ligation of coronary arteries, ultrasound-guided cardiac microsphere injection, and sodium laurate injection. New Zealand rabbits were allocated to four groups: a normal group (Blank group), an Open-chest group (Open-chest), a microsphere group (Echo-M), and a sodium laurate group (Echo-SL), each comprising 10 rabbits. The rabbits were sacrificed 24 h after the procedures, and their echocardiography, stress myocardial contrast echocardiography, pathology, and surgical times were compared.
View Article and Find Full Text PDFBackground: To evaluate the changes of right ventricular (RV) myocardial perfusion and function in patients with hypertrophic cardiomyopathy (HCM) by myocardial contrast echocardiography (MCE) and speckle tracking (2D-STE), and to explore the relationship between RV myocardial perfusion and strain.
Methods: Conventional ultrasound, MCE and 2D-STE were performed on 29 HCM patients and 21 healthy subjects to analyze RV myocardial perfusion, RV global strain, RV free wall strain, and strain of each segment. The correlation between RV myocardial perfusion and strain was further analyzed in HCM patients.
Background: Stem cell transplantation is one of the treatment methods for acute myocardial infarction (AMI). MicroRNA-1 contributes to the study of the essential mechanisms of stem cell transplantation for treating AMI by targeted regulating the myocardial microenvironment after stem cell transplantation at the post-transcriptional level. Thus, microRNA-1 participates in regulating the myocardial microenvironment after stem cell transplantation, a promising strategy for the Stem cell transplantation treatment of AMI.
View Article and Find Full Text PDFAs our previous study showed, the therapeutic effect of two genes (SERCA2a and Cx43) on heart failure after myocardial infarction (MI) was greater than that of single gene (SERCA2a or Cx43) therapy for bone marrow stem cell (BMSC) transplantation. Based on previous research, the aim of this study was to investigate the optimal ratio of codelivery of SERCA2a and Cx43 genes for MI therapy after biotinylated microbubble (BMB) transplantation via ultrasonic-targeted microbubble destruction (UTMD). Forty rats underwent left anterior descending (LAD) ligation and BMSC injection into the infarct and border zones.
View Article and Find Full Text PDFThe present study aimed to screen the best time window for the transplantation of bone marrow mesenchymal stem cells (MSCs) after acute myocardial infarction (MI) through targeted ultrasound microbubbles loaded with SDF-1α antibody. Thirty-six MI miniswine were randomly divided into six experimental groups according to the duration after infarction (1 day, 3 days, 1 week, 2 weeks, 3 weeks, and 4 weeks after infarction). MSCs were labeled with BrdU and then injected through the coronary artery in the stem cell transplantation group to detect the number of transplanted MSCs at different time points after MI.
View Article and Find Full Text PDFObjective: The aim of this study was to evaluate the value of myocardial contrast echocardiography (MCE) in detecting coronary microcirculation function dysfunction in ischemia with non-obstructive coronary artery (INOCA) disease.
Methods: Twenty-one patients with a clinical diagnosis of INOCA were admitted to the First Affiliated Hospital of Xinjiang Medical University because of chest pain. All participants underwent MCE and [F]fluorodeoxyglucose (FDG) positron emission tomography/computed tomography myocardial metabolic imaging.
Objective: The aim of this study was to explore the value of contrast-enhanced ultrasound (CEUS) combined with 2-D strain imaging in evaluating carotid plaque vulnerability and the correlations among CEUS perfusion parameters, strain parameters and histopathological findings in different plaque segments.
Methods: Patients with carotid artery stenosis who underwent carotid endarterectomy (CEA) at the First Affiliated Hospital of Xinjiang Medical University from September 2020 to June 2021 underwent preoperative carotid artery 2-D ultrasonography and CEUS. The plaques were divided into three segments: the proximal end of the shoulder, central cap and distal end of the shoulder.
Coronary microvascular dysfunction (CMD), which causes a series of cardiovascular diseases, seriously endangers human health. However, precision diagnosis of CMD is still challenging due to the lack of sensitive probes and complementary imaging technologies. Herein, we demonstrate indocyanine green-doped targeted microbubbles (named T-MBs-ICG) as dual-modal probes for highly sensitive near-infrared (NIR) fluorescence imaging and high-resolution ultrasound imaging of CMD in mouse models.
View Article and Find Full Text PDFGiven the miR-33's mechanistic relationships with multiple etiological factors in the pathogenesis of atherosclerosis (AS), we investigated the therapeutic potentials of dual-targeted microbubbles (HA-PANBs) in foam cell-specific release of anti-miR-33 (ANM33) oligonucleotides, resulting in the early prevention of AS progression and severity. The intracellular localization, loading optimization, and therapeutic effects of HA-PANBs were examined in detail in a co-cultured cell model of phagocytosis. Compared with non-targeting nanobubbles (NBs) and single-targeted microbubbles as controls, HA-PANBs efficiently delivered the ANM33 specifically to foam cells via sustained release, exhibiting its clinical value in mediating RNA silencing.
View Article and Find Full Text PDFAim: To investigate the pattern of left ventricular (LV) function and myocardial perfusion and their relationship in dilated cardiomyopathy (DCM) patients using layer-specific speckle tracking imaging (STI) and layer-specific myocardial contrast echocardiography (MCE).
Material And Methods: Thirty DCM patients and 30 controls were recruited and underwent STI and MCE examination. The peak values of longitudinal strain (LS), circumferential strain (CS) of each layer of LV were recorded and compared between groups.
Although stem cell transplantation and single-gene therapy have been intensively discussed separately as treatments for myocardial infarction (MI) hearts and have exhibited ideal therapeutic efficiency in animal models, clinical trials turned out to be disappointing. Here, we deliver sarcoplasmic reticulum Ca-ATPase 2a (SERCA2a) and connexin 43 (Cx43) genes simultaneously via an ultrasound-targeted microbubble destruction (UTMD) approach to chronic MI hearts that have been pre-treated with bone marrow mesenchymal stem cells (BMSCs) to amplify cardiac repair. First, biotinylated microbubbles (BMBs) were fabricated, and biotinylated recombinant adenoviruses carrying the SERCA2a or Cx43 gene were conjugated to the surface of self-assembled BMBs to form SERCA2a-BMBs, Cx43-BMBs or dual gene-loaded BMBs.
View Article and Find Full Text PDFBackground: Valvular dysfunction is a common complication in patients with bicuspid aortic valves (BAV). The aim of this study was to determine the relationship between BAV morphology patterns and valve dysfunction.
Methods: We searched the PubMed, The Cochrane Library, Web of Science, and CNKI until May 31, 2020, to identify all studies investigating the morphology of BAV and valvular dysfunction, and data were extracted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA).
Objective: To prepare a new type of dual-target microbubble loaded with anti-miR-33 (ANM33).
Methods: Carrier core nanobubbles (NBs) were prepared by thin film hydration, and microbubbles loaded with PM1 (PCNBs) were prepared by grafting DSPE-PEG2000-maleimide-PM1 onto the NB surface. ANM33 was connected via electrostatic adsorption and covalent bonding, and hyaluronic acid (HA) was covalently connected.
Pulmonary microvascular endothelial cell (PMVEC) apoptosis is the initial stage of adult pulmonary hypertension (PH), which involves high pulmonary arterial pressure and pulmonary vascular remodeling. However, the mechanism regulating PMVEC apoptosis and its involvement in the early stages of neonatal hypoxic PH (HPH) pathogenesis are currently unclear. The present study aimed to investigate the effects of heat shock protein 70 (HSP70) on hypoxia‑induced apoptosis in PMVECs.
View Article and Find Full Text PDFMyocardial contrast echocardiography (MCE) and two-dimensional speckle tracking echocardiography (2D-STE) were used to detect left ventricular myocardial microcirculation perfusion and myocardial systolic function in dilated cardiomyopathy (DCM) and to explore the relationship between the two.Conventional ultrasound, MCE, and 2D-STE examinations were performed on 30 patients and 30 controls. Left ventricular microcirculation perfusion, left ventricular longitudinal strain (GLS), and circumferential strain (GCS) were analyzed to further compare the correlation between left ventricular perfusion and myocardial strain parameters.
View Article and Find Full Text PDFCell Mol Bioeng
April 2021
Introduction: Transferring genes safely, targeting cells and achieving efficient transfection are urgent problems in gene therapy that need to be solved. Combining microbubbles (MBs) and viruses to construct double vectors has become a promising approach for gene delivery. Understanding the characteristic performance of MBs that carry genes is key to promoting effective gene transfer.
View Article and Find Full Text PDFTimely angiogenesis and effective microcirculation perfusion are essential for the survival and functional recovery of transplanted ovaries. Ultrasound-targeted microbubble destruction (UTMD) can lead to angiogenesis and increase flow perfusion by causing transient inflammation. The purpose of this study was to evaluate the effects of UTMD on transplanted ovarian revascularization and survival.
View Article and Find Full Text PDFMicrocirculation disturbance is a crucial pathological basis of heart damage; however, microcirculation alterations induced by hypoxic pulmonary hypertension (HPH) remain unknown, and the left ventricle (LV) in HPH is conventionally ignored. Herein, we investigated the changes in the cardiac structure, function and microcirculation after HPH and further compared the differences between the right ventricle (RV) and LV. Using a neonatal rat model of HPH, we found RV myocardial hypertrophy, dysfunction and poor myocardial perfusion in HPH rats.
View Article and Find Full Text PDF