Publications by authors named "Yuming Bao"

Citrus oil (CO) is a commonly used natural flavor with high volatility, which is not conducive to sustained release under food environmental stress. This study constructed novel β-cyclodextrin/cationic cellulose nanocrystal (β-CD/C-CNC) complexes via noncovalent interaction, which were used to stabilize CO-loaded Pickering emulsions (PE). The C-CNC greatly improved the physical stability, droplet dispersion and viscoelasticity of PE by forming a tight network structure, as verified by rheological behavior.

View Article and Find Full Text PDF

To facilitate the application of rhamnogalacturonan-I (RG-I)-enriched pectins (RGPs) as novel, healthy, and gelling food additives, this study compared the structural characteristics and gelling properties of RGPs extracted from citrus peel via four methods (alkali: AK, high-temperature/pressure: TP, citric acid: CA, and enzyme-assisted: EA extractions). AK and CA yielded pectins with the highest RG-I proportions (54.8 % and 51.

View Article and Find Full Text PDF

Membrane materials were widely used in guided tissue regeneration (GTR) to prevent fibroblast invasion and form a confined area for preferentially growing of osteoblast. A novel collagen-hyaluronate composite gradient membrane was prepared by Tilapia () skin collagen and sodium hyaluronate for potential GTR applications and their bioactivities were investigated by cellular viability. SEM results indicated the membrane showed a dense outer and a porous inner surface for effectively guiding the growth of bone tissue.

View Article and Find Full Text PDF

The human gut microbiota regulates nutritional metabolism, especially by encoding specific ferulic acid esterases (FAEs) to release functional ferulic acid (FA) from dietary fiber. In our previous study, we observed seven upregulated FAE genes during fecal slurry fermentation using wheat bran. Here, a 29 kDa FAE (FAE) from of was characterized and identified as the type-A FAE.

View Article and Find Full Text PDF

Citrus pectin can serve as a naturally digestion-resistant emulsifier, although how it achieves this effect is still unknown. In this study, the upper digestion fate of an emulsion stabilized by different concentrations of citrus pectin, and changes in its interfacial properties during digestion, were investigated. Emulsions stabilized by high-concentration citrus pectin (3 %) were relatively stable during digestion and had a lower free fatty acid (FFA) release rate than emulsions stabilized by low-concentration citrus pectin (1 %).

View Article and Find Full Text PDF

Citrus flavanones have the potential to alleviate atherosclerosis. The metabolism and anti-atherosclerosis signaling pathways of four citrus flavanones (naringin, naringenin, hesperidin, and hesperetin) were compared in ApoE mice. Naringin had the most potent anti-atherogenic effect, followed by hesperidin, naringenin, and hesperetin with reductions of 55.

View Article and Find Full Text PDF

Producing ferulic acid (FA) from the natural substrate with feruloyl esterase is promising in industries, screening and engineering new enzymes with high efficiency to increase the FA yield is of great concern. Here, the feruloyl esterase of Lactobacillus acidophilus (FAELac) was heterologous expressed and the FAELac with different oligomerization states was separated. Interestingly, the activity of dimer was 37-fold higher than high-polymer.

View Article and Find Full Text PDF

Naringin, a major flavonoid in citrus, has potential for preventing atherosclerosis. The presence in the colon of a large amount of naringin after oral intake might affect the gut microbiota. We investigated the role of gut microbiota remodeling in the alleviation of atherosclerosis by naringin.

View Article and Find Full Text PDF

Citrus flavonoids consist of diverse analogs and possess various health-promoting effects dramatically depending on their chemical structures. Since different flavonoids usually co-exist in real samples, it's necessary to develop rapid and efficient methods for simultaneous determination of multiple flavonoids. Thin layer chromatography combined with surface enhanced Raman spectroscopy (TLC-SERS) was established to simultaneously separate and detect 14 citrus flavonoids for the first time.

View Article and Find Full Text PDF

We previously explored citrus oil emulsion stabilized by citrus pectin. In this report, we characterized key parameters of the citrus pectin mesoscopic structure and their effect on emulsifying capacity, and explored the underlying mechanism by determining the interfacial properties, emulsifying ability, and micromorphology. To generate different mesoscopic structure, citrus pectins were hydrolyzed or regulated by pH and NaCl.

View Article and Find Full Text PDF

Sensitive, robust, and highly specific detection of O157:H7, one of the most hazardous foodborne pathogens and the cause of numerous diseases, is needed to ensure public health. Herein, a one-pot step method is reported for the preparation of multifunctional gold nanobones (NBs) (GNR) from gold nanorods (GNRs) comediated by an aptamer (Apt-1) and the signal molecule rhodamine B (RhB) for surface-enhanced Raman scattering detection of O157:H7. The characterized result showed that Apt-1 and RhB were embedded in the gold NBs, and then, this combination exhibited good recognition, excellent stability, and significant Raman signal intensity enhancement.

View Article and Find Full Text PDF

Structure and properties of pectin can be affected by extraction methods. In this study, grapefruit peel pectins extracted by HCl (at pH 1 [P1], 2 [P2], and 3 [P3]) and NaOH (at pH 9 [P9], 10 [P10], and 11 [P11]) were prepared and characterized. Atomic force microscopy (AFM) provided direct evidence of complex nano-structural patterns of pectins and revealed cross-linked networks of P10 and P11.

View Article and Find Full Text PDF

Polymethoxyflavones (PMFs) are found almost exclusively in citrus peel and have attracted much attention due to their potential health benefits. Dried citrus peel is an important ingredient for applications in food and traditional Chinese medicine. However, the structural changes of PMFs during drying processes of citrus peel remain unknown.

View Article and Find Full Text PDF

In this study, emulsions were prepared through spontaneous emulsification, using three different citrus oils as the oil phase and Tween 80 as the surfactant. Utilizing 4% Tween 80, three types of citrus oil emulsions were prepared with small particle size, monomodal distribution and high transmission. After 24 h, each emulsion exhibited different degrees of gravitational separation.

View Article and Find Full Text PDF

Citrus oils and their emulsions have been widely used in food and beverage products due to their flavor, various beneficial health functions and relative high solubility for lipophilic bioactive components. However, the non-digestibility and instability has limited the application of emulsions made from a single type of citrus oil. In this study, common triacylglycerol oils (i.

View Article and Find Full Text PDF

Verticillium dahliae isolates are most virulent on the host from which they were originally isolated. Mechanisms underlying these dominant host adaptations are currently unknown. We sequenced the genome of V.

View Article and Find Full Text PDF

Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e.

View Article and Find Full Text PDF

Fungal transcription factors (TFs) implicated in the regulation of virulence gene expression have been identified in a number of plant pathogens. In Verticillium dahliae, despite its agricultural importance, few regulators of transcription have been characterized. In this study, a T-DNA insertion mutant with significantly reduced virulence towards cotton was identified.

View Article and Find Full Text PDF

Verticillium wilt (VW), caused by infection by Verticillium dahliae, is considered one of the most yield-limiting diseases in cotton. To examine the genetic architecture of cotton VW resistance, we performed a genome-wide association study (GWAS) using a panel of 299 accessions and 85 630 single nucleotide polymorphisms (SNPs) detected using the specific-locus amplified fragment sequencing (SLAF-seq) approach. Trait-SNP association analysis detected a total of 17 significant SNPs at P < 1.

View Article and Find Full Text PDF

Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana.

View Article and Find Full Text PDF
Article Synopsis
  • Wilt is a serious disease caused by a phytopathogen that impacts important crops, and this study explores the role of the exoproteome in its pathogenicity.
  • Researchers used the isobaric tag technique (iTRAQ) to analyze the exoproteome induced in a cotton medium, finding 271 affected secreted proteins, with many involved in breaking down carbohydrates.
  • Two specific pectin lyase genes were targeted for deletion, showing that they are essential for the pathogen's ability to cause wilt in cotton, highlighting the importance of plant cell wall degradation in the infection process.
View Article and Find Full Text PDF

Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L(-1), reaching 80% and 100% inhibition at 10 mg L(-1) and 50 mg L(-1), respectively.

View Article and Find Full Text PDF

Verticillium dahliae is a phytopathogenic fungus that causes vascular wilt disease in a wide variety of crop plants, thereby causing extensive economic loss. In present study, one V. dahliae T-DNA mutant M01C06 showed the pathogenicity loss on cotton, and the expression of a flanking gene encoding cytochrome P450 monooxygenase (P450, VdCYP1) was strongly repressed.

View Article and Find Full Text PDF

The behavior and fate of 3 pesticides (triadimefon, malathion, and dichlorvos) and the main metabolites (triadimenol and malaoxon) during barley storage or beer processing were assessed using a pilot-plant equipment. The residues of all products were determined using liquid chromatography coupled with tandem mass spectrometry. Field investigation of the dissipation rate kinetics for triadimefon and malathion during storage indicated that their half-life was twice as high when 5 times the recommended dosage was used.

View Article and Find Full Text PDF

Background: Gossypium raimondii is a Verticillium wilt-resistant cotton species whose genome encodes numerous disease resistance genes that play important roles in the defence against pathogens. However, the characteristics of resistance gene analogues (RGAs) and Verticillium dahliae response loci (VdRLs) have not been investigated on a global scale. In this study, the characteristics of RGA genes were systematically analysed using bioinformatics-driven methods.

View Article and Find Full Text PDF