Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis.
View Article and Find Full Text PDFSalsolinol (1), a tetrahydroisoquinoline alkaloid, was isolated from the marine sponge Xestospongia cf. vansoesti collected in Indonesia as a proteasome inhibitor, along with three salsolinol derivatives, norsalsolinol (2), cis-4-hydroxysalsolinol (3), and trans-4-hydroxysalsolinol (4). Compounds 1 and 2 inhibited the chymotrypsin-like activity of the proteasome with IC(50) values of 50 and 32 µg/ml, respectively, but 3 and 4 showed no inhibitory effect even at 100 µg/ml.
View Article and Find Full Text PDFThree new labdane-type diterpenoids, viteagnusins F, G, and H, were isolated from the hexane extract of fruit (chasteberry) of Vitex agnus-castus L. (Verbenaceae) along with seven known compounds including four labdane-type diterpenoids, one norlabdane-type diterpenoid, one aromadendrane-type sesquiterpenoid, and one flavonoid. The chemical structures of the three new labdane-type diterpenoids were determined on the basis of spectroscopic data as well as chemical evidence.
View Article and Find Full Text PDF