Publications by authors named "Yumiko Hatanaka"

Article Synopsis
  • Excitatory cortical neurons are derived from cortical radial glial cells (RGCs), with early beliefs suggesting they originated directly from these cells in an inside-out manner.
  • The concept of indirect neurogenesis emerged, highlighting that intermediate neuronal progenitors (INPs) can also generate neurons, complicating the original direct neurogenesis theory.
  • Research using transgenic mice showed that both neurogenesis modes produce similar types of neurons in a coordinated sequence, with indirect neurogenesis playing a significant role in generating diverse neuron types, particularly in deeper cortical layers.
View Article and Find Full Text PDF

Interactions between neurons and their environment are crucial for proper termination of neuronal migration during brain development. In this review, we first introduce the migration behavior of cortical excitatory neurons from neurogenesis to migration termination, focusing on morphological and behavioral changes. We then describe possible requirements for environmental elements, including extracellular matrix proteins and Cajal-Retzius cells in the marginal zone, radial glial cells, and neighboring neurons, to ensure proper migration termination of these neurons at their final destinations.

View Article and Find Full Text PDF

Precise regulation of neuronal migration termination is crucial for the establishment of brain cytoarchitectures. However, little is known about how neurons terminate migration. Here we focused on interactions between migrating cortical neurons and their substrates, radial glial (RG) cells, and analyzed the role of Plexin A2 and A4 (PlxnA2/A4) receptors and their repulsive ligand, Semaphorin 6A (Sema6A), for this process.

View Article and Find Full Text PDF
Article Synopsis
  • - Neuronal migration is essential for building the nervous system, as it helps neurons find their correct locations using physical and chemical guides.
  • - Neurons have a leading process that helps in navigation during migration, changing from radial to tangential movements when needed, allowing them to reach distant targets.
  • - The trailing process of migrating neurons eventually transforms into axons, playing a key role in forming neuronal circuits essential for brain function.
View Article and Find Full Text PDF

Cortical neurons consist of excitatory projection neurons and inhibitory GABAergic interneurons, whose connections construct highly organized neuronal circuits that control higher order information processing. Recent progress in live imaging has allowed us to examine how these neurons differentiate during development in vivo or in in vivo-like conditions. These analyses have revealed how the initial steps of polarization, in which neurons establish an axon, occur.

View Article and Find Full Text PDF

Excitatory cortical neurons project to various subcortical and intracortical regions, and exhibit diversity in their axonal connections. Although this diversity may develop from primary axons, how many types of axons initially occur remains unknown. Using a sparse-labeling in utero electroporation method, we investigated the axonal outgrowth of these neurons in mice and correlated the data with axonal projections in adults.

View Article and Find Full Text PDF

Neurons are polarized cells that extend a single axon and several dendrites. Historically, how neurons establish their axon-dendrite polarity has been extensively studied using dissociated hippocampal cells in culture. Although such studies have identified the cellular and molecular mechanisms underlying axon-dendrite polarization, the conclusions have been limited to in vitro conditions.

View Article and Find Full Text PDF

The formation of axon-dendrite polarity is crucial for neuron to make the proper information flow within the brain. Although the processes of neuronal polarity formation have been extensively studied using neurons in dissociated culture, the corresponding developmental processes in vivo are still unclear. Here, we illuminate the initial steps of morphological polarization of excitatory cortical neurons in situ, by sparsely labeling their neuroepithelial progenitors using in utero electroporation and then examining their neuronal progeny in brain sections and in slice cultures.

View Article and Find Full Text PDF

We have developed a multimodal CMOS sensing device to detect fluorescence image and electrical potential for neural activities in a mouse deep brain. The device consists of CMOS image sensor with on-chip electrodes and excitation light sources, all of which are integrated on a polyimide substrate. The novel feature of this device is its embedded on-chip electrodes which are partially transmit incident light so that the whole image can be acquired by the sensor.

View Article and Find Full Text PDF

Cortical excitatory neurons migrate from their origin in the ventricular zone (VZ) toward the pial surface. During migration, these neurons exhibit a stellate shape in the intermediate zone (IZ), transform into bipolar cells, and then initiate radial migration, extending a trailing process, which may lead to an axon. Here we examined the role of neuropilin 1 (NRP1) in these developmental events.

View Article and Find Full Text PDF

Background: Robo1, Robo2 and Rig-1 (Robo3), members of the Robo protein family, are candidate receptors for the chemorepellents Slit and are known to play a crucial role in commissural axon guidance in the spinal cord. However, their roles at other axial levels remain unknown. Here we examine expression of Robo proteins by cerebellofugal (CF) commissural axons in the rostral hindbrain and investigate their roles in CF axon pathfinding by analysing Robo knockout mice.

View Article and Find Full Text PDF

During development, axon branching is influenced by sensory-evoked and spontaneous neural activity. We studied the molecular mechanism that underlies activity-dependent branch formation at horizontally elongating axons (horizontal axons) in the upper cortical layers, focusing on Rho family small GTPases. Axonal labeling with enhanced yellow fluorescent protein showed that horizontal axons formed several branches in organotypic slice cultures.

View Article and Find Full Text PDF

We developed an implantable one-chip biofluoroimaging device (termed biomedical photonic LSI; BpLSI) which enabled real-time molecular imaging with conventional electrophysiology in vivo in deep brain areas. The multimodal LSI enabled long-term sequential imaging of the fluorescence emitted by proteolysis-linked fluorogenic substrate. Using the BpLSI, we observed a process of stimulation-dependent modulation at synapse with multi-site (16 x 19 pixel) in widespread area and a high-speed video rate, and found that the gradual up-regulated proteolytic activity in a wide range of hippocampal CA1 area and the steep activity in local area, indicating that the proteolysis system is a basis for the fixation of long-term potentiation in post-excited synapses in the hippocampus.

View Article and Find Full Text PDF

Time-lapse studies indicate that ventricular zone (VZ)-derived cells show two migratory modes in the cerebral cortex at different stages of mammalian embryogenesis: somal translocation and locomotion. We carried out a systematic analysis to examine whether the migratory behavior of cortical neurons derived from the cortical VZ is stage-dependent. We labeled VZ cells of mouse embryos with green fluorescent protein (gfp) -encoding plasmids by in utero electroporation and evaluated the labeled cells after appropriate survival periods.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons originating from the cortical ventricular zone (VZ) migrate radially to their final positions, but understanding the link between their origin and mature form has been limited.
  • An in vitro experiment utilized GFP labeling in rat embryos to analyze the behavior of VZ-derived cells, revealing that after a day, many migrated towards the pial surface and began developing neural structures.
  • Over several days, these GFP(+) cells differentiated mainly into excitatory neurons resembling pyramidal cells, showcasing migration with leading processes that formed dendrites and trailing processes suggesting axonal formation.
View Article and Find Full Text PDF

Precisely regulated radial migration out of the ventricular zone is essential for corticogenesis. Here, we identify a mechanism that can tether ventricular zone cells in situ. FILIP interacts with Filamin A, an indispensable actin-binding protein that is required for cell motility, and induces its degradation in COS-7 cells.

View Article and Find Full Text PDF