Publications by authors named "Yumihiko S Ikura"

Mode selection and bifurcation of a synchronized motion involving two symmetric self-propelled objects in a periodic one-dimensional domain were investigated numerically and experimentally by using camphor disks placed on an annular water channel. Newton's equation of motion for each camphor disk, whose driving force was the difference in surface tension, and a reaction-diffusion equation for camphor molecules on water were used in the numerical calculations. Among various dynamical behaviors found numerically, four kinds of synchronized motions (reversal oscillation, stop-and-move rotation, equally spaced rotation, and clustered rotation) were also observed in experiments by changing the diameter of the water channel.

View Article and Find Full Text PDF

The propagation of a chemical wave on an inhibitory field, which was wedged between two excitable fields, was investigated for the photosensitive Belousov-Zhabotinsky (BZ) reaction. With an increase in the width of the inhibitory field between the excitable fields (W), the chemical wave divided into two waves at W = Wα. The divided chemical waves then coalesced at W = Wβ with a decrease in W.

View Article and Find Full Text PDF

We investigate the collective motion of symmetric self-propelled objects that are driven by a difference in the surface tension. The objects move around an annular water channel spontaneously and interact through the camphor layer that develops on the water surface. We found that two collective motion modes, discrete and continuous density waves, are generated depending on the number of self-propelled objects.

View Article and Find Full Text PDF

The oscillation of a polymer gel induced by the Belousov-Zhabotinsky (BZ) reaction was investigated under an external force composed of a square wave. The oscillation of the BZ reaction entrained to the periodic force and the features of this entrainment changed depending on the period and duty cycle of the square wave. The experimental results suggest that the change in the volume of the gel also gave feedback to the BZ reaction.

View Article and Find Full Text PDF

The mode change of a simple autonomous motor depending on the nature of a monolayer on water is investigated. A camphor disk is floated on a molecular layer of N-stearoyl-p-nitroaniline (C(18)ANA), which gives a surface-pressure (π)-area per molecule (A) isotherm with a local maximum and a local minimum. The nature of the camphor motion changes depending on A, and in particular, reciprocating motion is observed at a lower A while cutting out its own trajectory of motion.

View Article and Find Full Text PDF

The self-motion of a benzoquinone (BQ) disk on NADPH was investigated as the coupling of an autonomous motor and an enzyme reaction. In the absence of the enzyme reaction, features of motion changed depending on the concentration of NADPH, that is, continuous motion→ intermittent oscillatory motion→ no motion. When the reverse reaction from NADP(+) to NADPH was introduced into the system with the addition of an enzyme reaction, continuous motion changed to intermittent oscillatory motion with small amplitude.

View Article and Find Full Text PDF

We investigated the Marangoni flow around a camphor disk on water with the addition of sodium dodecyl sulfate (SDS). The flow velocity decreased with an increase in the concentration of SDS in the aqueous phase, and flow was hardly observed around the critical micelle concentration (cmc), because SDS reduced the driving force of Marangoni flow. However, the flow velocity increased with a further increase in the concentration of SDS.

View Article and Find Full Text PDF