Stem Cells Transl Med
December 2024
Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.
View Article and Find Full Text PDFMicroenvironmental factors, including substrate stiffness, regulate stem cell behavior and differentiation. However, the effects of substrate stiffness on the behavior of induced pluripotent stem cell (iPSC)- derived embryoid bodies (EB) remain unclear. To investigate the effects of mechanical cues on iPSC-EB differentiation, a 3D hydrogel-sandwich culture (HGSC) system is developed that controls the microenvironment surrounding iPSC-EBs using a stiffness-tunable polyacrylamide hydrogel assembly.
View Article and Find Full Text PDFThe transcriptional regulation of induced pluripotent stem cells (iPSCs) holds promise for their directed differentiation into ameloblasts, which are usually lost after tooth eruption. Ameloblast differentiation is regulated by multiple signaling molecules, including bone morphogenetic proteins (BMPs). Epiprofin (Epfn), a transcription factor, is expressed in the dental epithelium, and epithelial Epfn overexpression results in ectopic ameloblast differentiation and enamel formation in mouse incisor, a striking phenotype resembling that of mice with deletion of follistatin (a BMP inhibitor).
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) exhibit self-renewal, multi-lineage differentiation potential and immunomodulatory properties, and are promising candidates for cellular therapy of various tissues. Despite the effective function of MSCs, the gradual loss of stem cell characteristics that occurs with repeated passages may significantly limit their therapeutic potential. A novel 3D shaking method was previously established to generate MSC spheroids in growth medium (GM-spheroids) and successfully maintain the multipotency of expanded MSCs, yet the expression of MSC-related genes was still low.
View Article and Find Full Text PDFAmelogenin comprises ~90% of enamel proteins; however, the involvement of transcriptional activation in regulating ameloblast differentiation from induced pluripotent stem cells (iPSCs) remains unknown. In this study, we generated doxycycline-inducible -expressing mouse iPSCs (Amelx-iPSCs). We then established a three-stage ameloblast induction strategy from Amelx-iPSCs, including induction of surface ectoderm (stage 1), dental epithelial cells (DECs; stage 2), and ameloblast lineage (stage 3) in sequence, by manipulating several signaling molecules.
View Article and Find Full Text PDFMesenchymal stromal/stem cells (MSCs), which generally expand into adherent monolayers, readily lose their proliferative and multilineage potential following repeated passages. Floating culture systems can be used to generate MSC spheroids, which are expected to overcome limitations associated with conventional adherent cultures while facilitating scaffold-free cell transplantation. However, the phenotypic characteristics of spheroids after long-term culture are unknown.
View Article and Find Full Text PDF