Publications by authors named "Yumi Matsui"

Patients with melanoma with activating BRAF mutations (BRAF V600E/K) initially respond to combination therapy of BRAF and MEK inhibitors. However, their clinical efficacy is limited by acquired resistance, in some cases driven by amplification of the mutant BRAF gene and subsequent reactivation of the MAPK pathway. DS03090629 is a novel and orally available MEK inhibitor that inhibits MEK in an ATP-competitive manner.

View Article and Find Full Text PDF

CD147 is an immunoglobulin-like receptor that is highly expressed in various cancers and involved in the growth, metastasis, and activation of inflammatory pathways via interactions with various functional molecules, such as integrins, CD44, and monocarboxylate transporters. Through screening of CD147-targeting antibodies with antitumor efficacy, we discovered a novel rat monoclonal antibody 147D. This humanized IgG4-formatted antibody, h4147D, showed potent antitumor efficacy in xenograft mouse models harboring the human PDAC cell line MIA PaCa-2, HCC cell line Hep G2, and CML cell line KU812, which featured low sensitivity to the corresponding standard-of-care drugs (gemcitabine, sorafenib, and imatinib, respectively).

View Article and Find Full Text PDF

Nitro groups are often associated with synthetically manufactured compounds such as medicines and explosives, and rarely with natural products. Loquat emits a nitro compound, (2-nitroethyl)benzene, as a flower scent. The nitro compound exhibits fungistatic activity and is biosynthesised from l-phenylalanine via (E/Z)-phenylacetaldoxime.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies have shown that brown adipose tissue (BAT) plays a significant role in regulating glucose and lipid levels, in addition to its well-known function of generating heat.
  • Researchers identified a new "batokine," phospholipid transfer protein (PLTP), which is linked to improved glucose tolerance and insulin sensitivity when its levels are increased.
  • The findings suggest that PLTP helps enhance energy expenditure and lower cholesterol levels by facilitating communication between BAT and the liver, ultimately boosting glucose uptake and thermogenesis.
View Article and Find Full Text PDF

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) plays a key role in one-carbon (1C) metabolism in human mitochondria, and its high expression correlates with poor survival of patients with various types of cancer. An isozyme-selective MTHFD2 inhibitor is highly attractive for potential use in cancer treatment. Herein, we disclose a novel isozyme-selective MTHFD2 inhibitor DS44960156, with a tricyclic coumarin scaffold, which was initially discovered via high-throughput screening (HTS) and improved using structure-based drug design (SBDD).

View Article and Find Full Text PDF

Derivatization efforts were continued to discover backups for a potent selective PPARγ modulator, DS-6930. In this Letter, the replacement of 2-pyridine ring in DS-6930 with 3- or 4-pyridyl group is reported. As the introduction of substituents on the pyridine ring did not provide potent partial agonists, modifications of benzimidazole ring were explored to discover potent intermediate agonists.

View Article and Find Full Text PDF

The lead identification of a novel potent selective PPARγ agonist, DS-6930 is reported. To avoid PPARγ-related adverse effects, a partial agonist was designed to prevent the direct interaction with helix 12 of PPARγ-LBD. Because the TZD group is known to interact with helix 12, the TZD in efatutazone (CS-7017) was replaced to discover novel PPARγ intermediate partial agonist 8i.

View Article and Find Full Text PDF

Attempts were made to reduce the lipophilicity of previously synthesized compound (II) for the avoidance of hepatotoxicity. The replacement of the left-hand side benzene with 2-pyridine resulted in the substantial loss of potency. Because poor membrane permeability was responsible for poor potency in vitro, the adjustment of lipophilicity was examined, which resulted in the discovery of dimethyl pyridine derivative (I, DS-6930).

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK)-interacting kinases 1 (Mnk1) and 2 (Mnk2) modulate translation initiation through the phosphorylation of eukaryotic translation initiation factor 4E, which promotes tumorigenesis. However, Mnk1 and Mnk2 are dispensable in normal cells, suggesting that the inhibition of Mnk1 and Mnk2 could be effective in cancer therapy. To provide a structural basis for Mnk1 inhibition, a novel Mnk1 inhibitor was discovered and the crystal structure of Mnk1 in complex with this inhibitor was determined.

View Article and Find Full Text PDF

Tumor cells switch glucose metabolism to aerobic glycolysis by expressing the pyruvate kinase M2 isoform (PKM2) in a low active form, providing glycolytic intermediates as building blocks for biosynthetic processes, and thereby supporting cell proliferation. Activation of PKM2 should invert aerobic glycolysis to an oxidative metabolism and prevent cancer growth. Thus, PKM2 has gained attention as a promising cancer therapy target.

View Article and Find Full Text PDF

To obtain potent liver X receptor (LXR) agonists, a structure-activity relationship study was performed on a series of tert-butyl benzoate analogs. As the crystal structure analysis suggested applicable interactions between the LXR ligand-binding domain and the ligands, two key functional groups were introduced. The introduction of the hydroxyl group on the C6-position of the benzoate part enhanced the agonistic activity in a cell-based assay, and the carboxyl group in terminal improved the pharmacokinetic profile in mice, respectively.

View Article and Find Full Text PDF

Utilizing X-ray crystal structure analysis, (3S,5R)-5-[4-(2-chlorophenyl)-2,2-dimethyl-5-oxopiperazin-1-yl]piperidine-3-carboxamides were designed and identified as renin inhibitors. The most potent compound 15 demonstrated favorable pharmacokinetic and pharmacodynamic profiles in rat.

View Article and Find Full Text PDF

A novel orally bioavailable renin inhibitor, DS-8108b (5), showing potent renin inhibitory activity and excellent in vivo efficacy is described. We report herein the synthesis and pharmacological effects of 5 including renin inhibitory activity in vitro, suppressive effects of ex vivo plasma renin activity (PRA) in cynomolgus monkey, pharmacokinetic data, and blood pressure-lowering effects in an animal model. Compound 5 demonstrated inhibitory activities toward human renin (IC50 = 0.

View Article and Find Full Text PDF

Selective peroxisome proliferator-activated receptor gamma (PPARγ) modulators are expected to be a novel class of drugs improving plasma glucose levels without PPARγ-related adverse effects. As a continuation of our studies for (-)-Cercosporamide derivatives as selective PPARγ modulators, we synthesized substituted naphthalene type compounds and identified the most potent compound 15 (EC(50) = 0.94 nM, E(max) = 38%).

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma (PPARγ) is a potential drug target for treating type 2 diabetes. The selective PPARγ modulators (SPPARMs), which partially activate the PPARγ transcriptional activity, are considered to improve the plasma glucose level with attenuated PPARγ related adverse effects. However, the relationships between desired pharmacological profiles and ligand specific PPARγ transcriptional profiles have been unclear.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ (PPARγ; NR1C3) is known as a key regulator of adipocytogenesis and the molecular target of thiazolidinediones (TZDs), also known as antidiabetic agents. Despite the clinical benefits of TZDs, their use is often associated with adverse effects including peripheral edema, congestive heart failure, and weight gain. Here we report the identification and characterization of a non-thiazolidinedione PPARγ partial agonist, Cerco-A, which is a derivative of the natural product, (-)-cercosporamide.

View Article and Find Full Text PDF

The [RhCl(CO)dppp](2)-catalyzed intramolecular carbonylative [2 + 2 + 1] cycloaddition of allenenes was developed to prepare bicyclo[4.3.0]nonenones possessing a methyl group at the ring junction, which is difficult to achieve by the Pauson-Khand reaction of the corresponding enynes.

View Article and Find Full Text PDF

In an investigation of (-)-Cercosporamide derivatives with a plasma glucose-lowering effect, we found that N-benzylcarboxamide derivative 4 was a partial agonist of PPARgamma. A SAR study of the substituents on carboxamide nitrogen afforded the N-(1-naphthyl)methylcarboxamide derivative 23 as the most potent selective PPARgamma modulator. An X-ray crystallography study revealed that compound 23 bounded to the PPARgamma ligand binding domain in a unique way without any interaction with helix12.

View Article and Find Full Text PDF

A series of bisamidine derivatives each having a ring structure in the center of the molecule was synthesized and their Factor Xa (FXa) inhibitory activities were evaluated. Among them, some indoline derivatives showed potent inhibitory activities in vitro. In particular, (R)-18a having an (R)-configuration at the 2-position of the indoline ring exhibited the most potent FXa inhibitory activity in vitro, more potent than DX-9065a.

View Article and Find Full Text PDF

Purpose: RNA interference (RNAi) is a powerful tool for silencing gene expression posttranscriptionally. The purpose of this study was to examine whether in vivo RNAi can be induced against endogenous mdr1a/1b in adult mice and to assess the feasibility of generating P-glycoprotein (P-gp) knockdown mice based on RNAi by a very simple intravenous injection of synthetic small interfering RNA (siRNAs) or siRNA-expressing plasmid DNAs.

Methods: The targeted sequences for silencing mdr1a specifically or mdr1a/1b simultaneously were examined in an in vitro study using a mouse colon carcinoma cell line, colon26 cells, in culture.

View Article and Find Full Text PDF

RNA interference (RNAi) induced by delivery of a small-interfering RNA (siRNA)-expressing vector was characterized in mice. siRNA-expressing plasmid DNA (pDNA) was injected by a hydrodynamics-based procedure along with pDNA encoding an exogenous target luciferase gene. A comparative study showed that stem-loop-type siRNA-expressing pDNA was superior, in terms of the transgene suppressive efficacy, to the tandem-type in the liver following systemic delivery of these pDNAs.

View Article and Find Full Text PDF

P-glycoprotein (P-gp) is an efflux transporter with a wide substrate specificity that plays an important role in the disposition of drugs in the epithelial cells of various tissues, such as the gastrointestinal tract, liver, and kidney. One characteristic feature of this efflux transporter is that its expression and activity are modulated by various factors, including cytokines. Here, we investigated the effect of interferon-gamma (IFN-gamma) on the transport activity of P-gp and its expression in mice, since the cytokine is induced by various stimuli and capable of provoking a variety of cellular responses.

View Article and Find Full Text PDF