Publications by authors named "Yumi Kunisawa"

Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver.

View Article and Find Full Text PDF

A block/homo-mixed polyplex micelle, comprising of cationic homo polymer: poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} P[Asp(DET)] and block copolymer: polyethylene glycol (PEG)-b-P[Asp(DET)], has been reported to exhibit the efficient transgene expression in vivo by intratracheal and systemic administration. In the present study, we investigated the potential of immunogene therapy by intraperitoneal (i.p.

View Article and Find Full Text PDF

Hedgehog signal is re-activated in several cancers. In this study, we examined the role of Gli3 on malignant phenotype of tumorigenicity for colorectal cancer and its relationship with p53, WNT and ERK/AKT signals. Gli3 expression was detected in HT29 and SW480 (p53-mutant) cells, but not in DLD-1 (p53-mutant) or HCT116 (p53-wild type) cells by reverse transcription-polymerase chain reaction and immunocytochemistry.

View Article and Find Full Text PDF

Block copolymer of poly(ethylene glycol)-block-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-P[Asp(DET)]) has been originally introduced as a promising gene carrier by forming a nanomicelle with plasmid DNA. In this study, the polyplex micelle of PEG-SS-P[Asp(DET)], which disulfide linkage (SS) between PEG and cationic polymer can detach the surrounding PEG chains upon intracellular reduction, was firstly evaluated with respect to in vivo transduction efficiency and toxicity in comparison to that of PEG-P[Asp(DET)] in peritoneally disseminated cancer model. Intraperitoneal (i.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the subserosa (ICC-SS) of the guinea-pig proximal colon were studied by immunohistochemistry for c-Kit receptors and by transmission electron microscopy. These cells were distributed within a thin layer of connective tissue space immediately beneath the mesothelium and were multipolar with about five primary cytoplasmic processes that divided further into secondary and tertiary processes to form a two-dimensional network. Ultrastructural observations revealed that ICC-SS were connected to each other via gap junctions.

View Article and Find Full Text PDF

Interstitial cells of Cajal (ICC) form specialized networks in the gastrointestinal tract that coordinate cellular communications between nerves and smooth muscle cells. However, little is known about ICC in the gut mucosa or submucosa. Here, we report for the first time that Kit-immunoreactive ICC are associated with the submucosal (Meissner's) plexus of the Guinea-pig stomach.

View Article and Find Full Text PDF