Polyamines are organic cations that are important in all domains of life. Here, we show that in Salmonella, polyamine levels and Mg levels are coordinately regulated and that this regulation is critical for viability under both low and high concentrations of polyamines. Upon Mg starvation, polyamine synthesis is induced, as is the production of the high-affinity Mg transporters MgtA and MgtB.
View Article and Find Full Text PDFPurine is a nitrogen-containing compound that is abundant in nature. In organisms that utilize purine as a nitrogen source, purine is converted to uric acid, which is then converted to allantoin. Allantoin is then converted to ammonia.
View Article and Find Full Text PDFMicrobiology (Reading)
December 2017
The Escherichia coli PhoB-PhoR two-component system responds to phosphate starvation and induces the expression of many genes. Previous studies suggested that phosphate starvation induces oxidative stress, but the involvement of the PhoB regulon in oxidative stress tolerance has not been clarified. Here, we showed that ytfK, one of the PhoB regulon genes, is involved in cell tolerance to a redox-cycling drug, menadione, and H2O2 in stationary-phase cells.
View Article and Find Full Text PDFPreviously, we constructed a series of reduced-genome strains of Escherichia coli by combining large-scale chromosome deletions and then tested the sensitivity of these strains to the redox-cycling drug menadione. In this study, we analyzed a deletion that increased menadione sensitivity and discovered that loss of selenocysteine synthase genes was responsible for the strain's reduced tolerance to oxidative stress. Mutants of formate dehydrogenases, which are selenocysteine-containing enzymes, were also sensitive to menadione, indicating that these enzymes are involved in oxidative stress during stationary phase, specifically under microaerobic conditions in the presence of glucose.
View Article and Find Full Text PDFThe construction of engineered bacterial cells with a reduced genome allows the investigation of molecular mechanisms that may be cryptic in wild-type strains and derivatives. Previously, a large-scale combined deletion mutant of Escherichia coli that lacked 29.7% of the parental chromosome was constructed by combining large chromosome deletions.
View Article and Find Full Text PDF