Publications by authors named "Yumi Iguchi"

In vitro susceptibility assays of antifungal activity do not always accurately predict in vivo efficacy. As well as having a clear clinical importance, the ability to predict efficacy is also essential for effective screening of novel drug compounds. Initial screening of novel compounds must often be based on in vitro data.

View Article and Find Full Text PDF

The aim of this study was to compare the pharmacodynamics of the azole antifungal drugs fluconazole, itraconazole and ketoconazole, and the polyene antifungal amphotericin B, in a mouse model of disseminated Candida albicans infection. In order to directly compare effective serum concentrations of these antifungals, drug concentrations were assayed microbiologically by measuring inhibition of C. albicans mycelial growth (mMIC) in a mouse serum-based assay (serum antifungal titer).

View Article and Find Full Text PDF

TiO2 powder-containing paper composites, called TiO2 paper, were prepared by a papermaking technique, and their photocatalytic efficiency was investigated. The TiO2 paper has a porous structure originating from the layered pulp fiber network, with TiO2 powders scattered on the fiber matrix. Under UV irradiation, the TiO2 paper decomposed gaseous acetaldehyde more effectively than powdery TiO2 and a pulp/TiO2 mixture not in paper form.

View Article and Find Full Text PDF

To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C.

View Article and Find Full Text PDF

A novel paper-based material containing titanium dioxide (TiO(2)) photocatalyst was successfully prepared by a papermaking technique with the internal addition of inorganic fibers on which TiO(2) particles were supported. Photodegradation performance of acetaldehyde gas, an indoor pollutant, and the durability of the TiO(2)-containing papers were investigated under UV irradiation. Ceramic fiber suspension and polydiallyldimethylammonium chloride as a cationic flocculant were mixed, followed by the addition of TiO(2) suspension and anionic polyacrylamide.

View Article and Find Full Text PDF