Publications by authors named "Yumeng Men"

Chiral quantum dots (QDs) are promising materials applied in many areas, such as chiral molecular recognition and spin selective filter for charge transport, and can be prepared by facile ligand exchange approaches. However, ligand exchange leads to an increase in surface defects and reduces the efficiencies of radiative recombination and charge transport, which restricts further applications. Here, we investigate the light-induced photoluminescence (PL) enhancement in chiral L- and D-cysteine CdSe QD thin films, providing a strategy to increase the PL.

View Article and Find Full Text PDF

Electron spin dynamics in CdS quantum dots (QDs) with hole acceptor 1-octanethiol organic molecules are investigated by time-resolved ellipticity spectroscopy. An anomalous dependence of laser fluences on electron spin excitation for the first time is reported. Increasing the laser fluence, the electron spin is switched from one direction to an antiparallel direction (spin direction switching, SDS) when adding enough 1-octanethiol hole acceptors in an air atmosphere.

View Article and Find Full Text PDF

The coexistence of two spin components with different Larmor frequencies in colloidal CdSe and CdS quantum dots (QDs) leads to the entanglement of spin signals, complicating the analysis of dynamic processes and hampering practical applications. Here, we explored several methods, including varying the types of hole acceptors, air or anaerobic atmosphere and laser repetition rates, in order to facilitate the obtention of one single Larmor frequency in the coherent spin dynamics using time-resolved ellipticity spectroscopy at room temperature. In an air or nitrogen atmosphere, manipulating the photocharging processes by applying different types of hole acceptors, e.

View Article and Find Full Text PDF

Compared with itinerant electrons in monolayer transition-metal dichalcogenides, localized electrons exhibit coherent spin precession in transverse magnetic fields and usually have longer spin relaxation times. Here, we uncover the intrinsic spin dephasing processes of localized electrons whose mechanism remains unclear. Electron spin coherence dynamics are studied by time-resolved Faraday rotation spectroscopy in monolayer MoS, where four subensembles of localized electrons are found with different factor values and inhomogeneous broadening.

View Article and Find Full Text PDF

The electron spin relaxation processes are complicated in semiconductor quantum dots. Different spin relaxation mechanisms may result in an increased or decreased spin relaxation rate with the size. The information on size-dependent spin dynamics helps to clarify and better understand the underlying spin relaxation processes.

View Article and Find Full Text PDF