In this study, meglumine (Meg) and arginine (Arg), acting as the hydrotrope, were used to form the stable curcumin (Cur)-hydrotrope complexes, respectively. Based on the single factor experiment optimization, the Cur-Meg/or Cur-Arg complex was prepared and then characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and differential scanning calorimetry (DSC). The results showed that Cur-Meg/Arg complexes bound together by hydrogen bonds/or ionic bonds were successfully prepared and the amorphous state of Cur appeared in their complexes.
View Article and Find Full Text PDFCurcumin grafted hyaluronic acid modified pullulan polymers (Cur-HA-SPu) by chemical conjugation was designed and prepared, and its film may be used to accelerate wound healing and help to fight infection. The synthesis of Cur-HA-SPu polymer was characterized by FT-IR, H NMR and DSC. Cur-HA-SPu film has a higher swelling ratio than that of HA-SPu film.
View Article and Find Full Text PDF