MicroRNAs (miRNAs), such as miR-192, mediate the actions of transforming growth factor-β1 (TGF-β) related to the pathogenesis of diabetic kidney diseases. We found that the biphasic induction of miR-192 expression by TGF-β in mouse renal glomerular mesangial cells initially involved the Smad transcription factors, followed by sustained expression that was promoted by acetylation of the transcription factor Ets-1 and of histone H3 by the acetyltransferase p300, which was activated by the serine and threonine kinase Akt. In mesangial cells from Ets-1-deficient mice or in cells in which Ets-1 was knocked down, basal amounts of miR-192 were higher than those in control cells, but sustained induction of miR-192 by TGF-β was attenuated.
View Article and Find Full Text PDFETS-related gene (ERG) is a member of the ETS transcription factor family. Our previous studies have shown that ERG expression is highly enriched in endothelial cells (EC) both in vitro and in vivo. ERG expression is markedly repressed in response to inflammatory stimuli.
View Article and Find Full Text PDFMatrix metalloproteinase (MMP)-13 has a pivotal, rate-limiting function in cartilage remodeling and degradation due to its specificity for cleaving type II collagen. The proximal MMP13 promoter contains evolutionarily conserved E26 transformation-specific sequence binding sites that are closely flanked by AP-1 and Runx2 binding motifs, and interplay among these and other factors has been implicated in regulation by stress and inflammatory signals. Here we report that ELF3 directly controls MMP13 promoter activity by targeting an E26 transformation-specific sequence binding site at position -78 bp and by cooperating with AP-1.
View Article and Find Full Text PDFBackground: Angiotensin II (Ang II) is a critical mediator vascular inflammation and remodeling in a number of diseases including hypertension and atherosclerosis. The purpose of this study was to evaluate the role of the epithelium-specific ETS transcription factor-1 (ESE-1), a member of E26 transformation-specific sequence (ETS) transcription factors, as a mediator of Ang II-mediated vascular responses.
Methods: ESE-1 knockout mice were used to evaluate the role of ESE-1 in regulating Ang II-mediated vascular inflammation and remodeling.
Vascular aging is an independent risk factor for cardiovascular disease that can occur in the absence of other traditional risk factors. Inflammation is a hallmark of vascular aging that ultimately leads to structural changes in the vessel wall including an increase in medial thickness and perivascular fibrosis. Several classes of transcription factors have been identified that participate in the regulation of cellular responses associated with vascular aging.
View Article and Find Full Text PDFERG (Ets-related gene) is an ETS transcription factor that has recently been shown to regulate a number of endothelial cell (EC)-restricted genes including VE-cadherin, von Willebrand factor, endoglin, and intercellular adhesion molecule-2. Our preliminary data demonstrate that unlike other ETS factors, ERG exhibits a highly EC-restricted pattern of expression in cultured primary cells and several adult mouse tissues including the heart, lung, and brain. In response to inflammatory stimuli, such as tumor necrosis factor-alpha, we observed a marked reduction of ERG expression in ECs.
View Article and Find Full Text PDFThe epithelium-specific ETS (ESE)-1 transcription factor is induced in chondrocytes by interleukin-1beta (IL-1beta). We reported previously that early activation of EGR-1 by IL-1beta results in suppression of the proximal COL2A1 promoter activity by displacement of Sp1 from GC boxes. Here we report that ESE-1 is a potent transcriptional suppressor of COL2A1 promoter activity in chondrocytes and accounts for the sustained, NF-kappaB-dependent inhibition by IL-1beta.
View Article and Find Full Text PDFAngiotensin (Ang) II is a potent mediator of vascular inflammation. A central mechanism by which Ang II promotes inflammation is through the generation of reactive oxygen species (ROS). In the current study, we investigated the role of the transcription factor Ets-1 in regulating Ang II-induced ROS generation.
View Article and Find Full Text PDFAng II is a central mediator of vascular inflammation and remodeling. The transcription factor Ets-1 is rapidly induced in vascular smooth muscle and endothelial cells of the mouse thoracic aorta in response to systemic Ang II infusion. Arterial wall thickening, perivascular fibrosis, and cardiac hypertrophy are significantly diminished in Ets1-/- mice compared with control mice in response to Ang II.
View Article and Find Full Text PDFBackground And Purpose: The detailed role of angiotensin II in salt-exacerbated stroke is unclear. We examined the role of angiotensin II in salt-accelerated stroke of stroke-prone spontaneously hypertensive rats (SHRSP).
Methods: Salt-loaded SHRSP were orally given the angiotensin II type 1 (AT1) receptor blocker candesartan (0.
The mitogen-activated protein (MAP) kinase pathways has been shown to be necessary for mitogen-stimulated proliferation, but its role in cell migration has not been fully understood. In this study, we investigated the possible contribution of signaling pathways through c-Jun in platelet-derived growth factor (PDGF)-BB directed cell migration in rat aortic vascular smooth muscle cells (VSMCs) infected with a recombinant adenovirus containing the dominant-negative c-Jun (Ad-DN-c-Jun). DN-c-Jun protein was expressed dose-dependently in VSMCs infected with Ad-DN-c-Jun.
View Article and Find Full Text PDFObjective: We investigated the comparative roles of mitogen-activated protein (MAP) kinases, including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38, in vascular smooth muscle cell (VSMC) proliferation, migration, and gene expression.
Methods And Results: VSMCs were infected with recombinant adenovirus containing dominant-negative mutants of ERK, p38, and JNK (Ad-DN-ERK, Ad-DN-p38, and Ad-DN-JNK, respectively) to specifically inhibit the respective MAP kinases and then stimulated with platelet-derived growth factor (PDGF)-BB. Ad-DN-ERK attenuated PDGF-BB-induced VSMC proliferation more potently than Ad-DN-p38 or Ad-DN-JNK, indicating the dominant role of ERK in VSMC proliferation.
Arterioscler Thromb Vasc Biol
August 2002
Objective: The present study was undertaken to elucidate the effect of the ACE inhibitor and the angiotensin II type 1 (AT1) receptor antagonist in combination on neointimal hyperplasia after balloon injury.
Methods And Results: Temocapril (an ACE inhibitor), CS-866 (an AT1 receptor antagonist), or their combination was given orally to rats, and their effects were compared on vascular hyperplasia induced by balloon injury. The maximal preventive effect of temocapril and CS-866 alone on neointimal thickening after balloon injury was obtained at a dose of 20 and 10 mg/kg per day, respectively.
The mechanism and treatment of hypertensive systolic heart failure are not well defined. We compared the effect of an angiotensin-converting enzyme inhibitor (cilazapril, 10 mg/kg), an angiotensin receptor blocker (candesartan, 3 mg/kg), a calcium channel blocker (benidipine, 1, 3 or 6 mg/kg), and the same calcium channel blocker combined with renin-angiotensin blockers on systolic heart failure in Dahl salt-sensitive (DS) rats. DS rats were fed an 8% Na diet from 6 weeks of age and then subjected to the above drug treatments.
View Article and Find Full Text PDFThe molecular mechanism of glomerular injury in hypertension remains to be clarified. In this study, to examine the possible role of platelet-derived growth factor (PDGF) receptors in hypertensive glomerular injury, we specifically measured glomerular PDGF receptor tyrosine phosphorylation in various models of hypertensive rats using immunoprecipitation and Western blot analysis. A high-salt diet significantly enhanced glomerular PDGF beta-receptor tyrosine phosphorylation of Dahl-salt sensitive rats (DS-rats) without an increase in its protein levels, and this enhancement was associated with an elevation of blood pressure and glomerular injury.
View Article and Find Full Text PDFTo examine the mechanism of nephropathy in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a recently developed type II diabetic model, we compared the long-term effect of angiotensin-converting enzyme (ACE) inhibitor (imidapril, 1 mg/kg/day), calcium channel blocker (amlodipine, 10 mg/kg/day), and insulin (5-10 U/kg/day) on nephropathy of OLETF rats. Both imidapril and amlodipine, but not insulin, significantly reduced blood pressure of OLETF rats. Imidapril treatment significantly decreased urinary albumin excretions and improved glomerulosclerosis of OLETF rats, while amlodipine failed to improve nephropathy of OLETF rats despite lowering of blood pressure.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2002
Although platelet-derived growth factor (PDGF)-BB is thought to participate in vascular disorders, the mechanism of PDGF-induced vascular smooth muscle cell (SMC) proliferation is not fully understood. This study was undertaken to examine the role of c-Jun in PDGF-BB-induced proliferation of rat aortic SMCs. PDGF-BB (10 ng/mL) significantly increased activator protein (AP)-1 DNA binding activity in SMCs, followed by the increase in [(3)H]thymidine incorporation and cell number.
View Article and Find Full Text PDF