Publications by authors named "Yumei Xiong"

Article Synopsis
  • Acute necrotizing encephalopathy (ANE) is a severe neurological complication in children with influenza that progresses rapidly and often gets misdiagnosed as simpler conditions like seizures or mild encephalopathy.* -
  • The study aimed to create and validate a prediction model using a random forest algorithm to effectively differentiate ANE from seizures/convulsions and mild influenza-associated encephalopathy (IAE) in affected children.* -
  • The model showed high accuracy, achieving over 80% in distinguishing ANE, particularly performing well in identifying seizures/convulsions and demonstrating limitations with mild IAE misdiagnosis, thus aiding early treatment decisions for pediatric influenza cases.*
View Article and Find Full Text PDF

Objective: Acute necrotizing encephalopathy (ANE) is a rare but severe encephalopathy and is associated with a high morbidity and mortality. We aimed to analyze and compare the clinical features and predictive indicators of pediatric ANE.

Materials And Methods: This retrospective study included children with ANE diagnosed at Guangzhou Women and Children's Medical Center between November 2018 and January 2020.

View Article and Find Full Text PDF

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the western blotting data shown in Fig. 6 and the tumor images shown in Fig. 7A were strikingly similar to data appearing in different form in other articles by different authors.

View Article and Find Full Text PDF

Dexmedetomidine (DEX) could serve as an adjuvant analgesic during cancer therapies. Abnormal expression of microRNAs (miRNAs) could lead to cancer development. This study was aimed to explore the roles of DEX in ovarian cancer (OC) development.

View Article and Find Full Text PDF

Cardiometabolic syndrome has become a global health issue. Heart failure is a common comorbidity of cardiometabolic syndrome. Successful drug development to prevent cardiometabolic syndrome and associated comorbidities requires preclinical models predictive of human conditions.

View Article and Find Full Text PDF

BACKGROUND The aim of this study was to explore the effect of dexmedetomidine (DEX)-mediated insulin-like growth factor 2 (IGF2) signal pathway on immune function and cancer cell invasion and migration in rats with ovarian cancer. MATERIAL AND METHODS Forty rats with ovarian cancer were divided into 4 groups: model group, and low dose (0.2 μg/kg/hour DEX), medium dose (1.

View Article and Find Full Text PDF

Pharmacological treatment of recombinant growth differentiation factor 15 (GDF15) proteins reduces body weight in obese rodents and primates. Paradoxically, circulating GDF15 levels are increased in obesity. To investigate the role of endogenous GDF15 in obesity development, we put GDF15 knockout mice and wildtype controls on high fat diet for the mice to develop diet-induced obesity.

View Article and Find Full Text PDF

In search of metabolically regulated secreted proteins, we conducted a microarray study comparing gene expression in major metabolic tissues of fed and fasted ob/ob mice and C57BL/6 mice. The array used in this study included probes for ~4000 genes annotated as potential secreted proteins. Circulating macrophage inhibitory cytokine 1 (MIC-1)/growth differentiation factor 15 (GDF15) concentrations were increased in obese mice, rats, and humans in comparison to age-matched lean controls.

View Article and Find Full Text PDF

Glucokinase (GK) catalyzes the phosphorylation of glucose to glucose-6-phosphate. We present the structure-activity relationships leading to the discovery of AM-2394, a structurally distinct GKA. AM-2394 activates GK with an EC50 of 60 nM, increases the affinity of GK for glucose by approximately 10-fold, exhibits moderate clearance and good oral bioavailability in multiple animal models, and lowers glucose excursion following an oral glucose tolerance test in an ob/ob mouse model of diabetes.

View Article and Find Full Text PDF

Two 1-(4-aryl-5-alkyl-pyridin-2-yl)-3-methylurea glucokinase activators were identified with robust in vivo efficacy. These two compounds possessed higher solubilities than the previously identified triaryl compounds (i.e.

View Article and Find Full Text PDF

Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples.

View Article and Find Full Text PDF

Trefoil factor 3 (TFF3), also called intestinal trefoil factor or Itf, is a 59 amino acid peptide found as a homodimer predominantly along the gastrointestinal tract and in serum. TFF3 expression is elevated during gastrointestinal adenoma progression and has been shown to promote mucosal wound healing. Here we show that in contrast to other trefoil factor family members, TFF1 and TFF2, TFF3 is highly expressed in mouse duodenum, jejunum and ileum and that its expression is regulated by food intake.

View Article and Find Full Text PDF

Glucokinase (GK) activators represent a class of type 2 diabetes therapeutics actively pursued due to the central role that GK plays in regulating glucose homeostasis. Herein we report a novel C5-alkyl-2-methylurea-substituted pyridine series of GK activators derived from our previously reported thiazolylamino pyridine series. Our efforts in optimizing potency, enzyme kinetic properties, and metabolic stability led to the identification of compound 26 (AM-9514).

View Article and Find Full Text PDF

A growing body of evidence suggests that microRNA-218 (miR-218) acts as a tumor suppressor and is involved in tumor progression, development and metastasis and confers sensitivity to certain chemotherapeutic drugs in several types of cancer. However, our knowledge concerning the exact roles played by miR-218 in esophageal squamous cell carcinoma (ESCC) and the underlying molecular mechanisms remain relatively unclear. Thus, the aims of this study were to detect the expression of miR-218 in human ESCC tissues and explore its effects on the biological features and chemosensitivity to cisplatin (CDDP) in an ESCC cell line (Eca109), so as to provide new insights for ESCC treatment.

View Article and Find Full Text PDF

Elucidating the role of secreted frizzled-related protein 5 (SFRP5) in metabolism and obesity has been complicated by contradictory findings when knockout mice were used to determine metabolic phenotypes. By overexpressing SFRP5 in obese, prediabetic mice we consistently observed elevated hyperglycemia and glucose intolerance, supporting SFRP5 as a negative regulator of glucose metabolism. Accordingly, Sfrp5 mRNA expression analysis of both epididymal and subcutaneous adipose depots of mice indicated a correlation with obesity.

View Article and Find Full Text PDF

Objective: Although the human genome encodes ∼ 20,000 protein-coding genes, only a very small fraction of these have been explored as potential targets for therapeutic development. The challenge of identifying and validating new protein targets has contributed to the significant reduction in the productivity of the pharmaceutical industry in the recent decade, highlighting the continued need to find new therapeutic targets.

Research Design And Methods: The traditional methods to discover new targets are expensive, low throughput and time consuming, usually taking years to validate or invalidate a target.

View Article and Find Full Text PDF

The transcription factor ThPOK promotes CD4(+) T cell differentiation in the thymus. Here, using a mouse strain that allows post-thymic gene deletion, we show that ThPOK maintains CD4(+) T lineage integrity and couples effector differentiation to environmental cues after antigenic stimulation. ThPOK preserved the integrity and amplitude of effector responses and was required for proper differentiation of types 1 and 2 helper T cells in vivo by restraining the expression and function of Runx3, a nuclear factor crucial for cytotoxic T cell differentiation.

View Article and Find Full Text PDF

Herein, we report the lead optimization of amrinone-phenylalanine based GPR142 agonists. Structure-activity relationship studies led to the discovery of aminopyrazole-phenylalanine carboxylic acid 22, which exhibited good agonistic activity, high target selectivity, desirable pharmacokinetic properties, and no cytochrome P450 or hERG liability. Compound 22, together with its orally bioavailable ethyl ester prodrug 23, were found to be suitable for in vivo proof-of-concept studies.

View Article and Find Full Text PDF

GPR142 is a G protein-coupled receptor that is predominantly expressed in pancreatic β-cells. GPR142 agonists stimulate insulin secretion in the presence of high glucose concentration, so that they could be novel insulin secretagogues with reduced or no risk of hypoglycemia. We report here the optimization of HTS hit compound 1 toward a proof of concept compound 33, which showed potent glucose lowering effects during an oral glucose tolerance test in mice and monkeys.

View Article and Find Full Text PDF

FFA1 (GPR40) and GPR120 are G-protein-coupled receptors activated by long-chain fatty acids. FFA1 is expressed in pancreatic β-cells, where it regulates glucose-dependent insulin secretion, and GPR120 has been implicated in mediating GLP-1 secretion. We show here that FFA1 co-localizes with GLP-1 in enteroendocrine cells and plays a critical role in glucose management by mediating GLP-1 secretion in vivo.

View Article and Find Full Text PDF

CD4(+) helper T cells are essential for immune responses and differentiate in the thymus from CD4(+) CD8(+) "double-positive" (DP) thymocytes. The transcription factor Runx3 inhibits CD4(+) T-cell differentiation by repressing Cd4 gene expression; accordingly, Runx3 is not expressed in DP thymocytes or developing CD4(+) T cells. The transcription factor Thpok is upregulated in CD4-differentiating thymocytes and required to repress Runx3.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DPP-IV) degrades the incretin hormone glucagon-like peptide 1 (GLP-1). Small molecule DPP-IV inhibitors have been used as treatments for type 2 diabetes to improve glucose tolerance. However, each of the marketed small molecule drugs has its own limitation in terms of efficacy and side effects.

View Article and Find Full Text PDF

T helper (Th) cells are critical for defenses against infection and recognize peptides bound to class II major histocompatibility complex (MHC II) molecules. Although transcription factors have been identified that direct Th cells into specific effector fates, whether a "master" regulator controls the developmental program common to all Th cells remains unclear. Here, we showed that the two transcription factors Thpok and LRF share this function.

View Article and Find Full Text PDF

GPR142 is a novel GPCR that is predominantly expressed in pancreatic β-cells. GPR142 agonists potentiate glucose-dependent insulin secretion, and therefore can reduce the risk of hypoglycemia. Optimization of our lead pyridinone-phenylalanine series led to a proof-of-concept compound 22, which showed in vivo efficacy in mice with dose-dependent increase in insulin secretion and a decrease in glucose levels.

View Article and Find Full Text PDF

The proper choice of the CD4-helper or CD8-cytotoxic lineages by developing T cells is crucial for the generation of an antigen-responsive and functionally fit T cell repertoire. Here we present a brief overview of the transcriptional control of this process, with emphasis on two issues. The study of Cd4 expression, that had previously generated important paradigms for transcriptional regulation in eukaryotic cells, now brings new twists to the concept of 'epigenetic memory'.

View Article and Find Full Text PDF