Introducing carbon quantum dots (CQDs) into photocatalysts is believed to boost the charge transfer rate and reduce charge complexation. Doping heteroatoms such as N, S, or P enable CQDs to have an uplifting electron transfer capability. However, the application of oxygen-doped CQDs to improve the performance of photocatalysts has rarely been reported.
View Article and Find Full Text PDFIn this study, a novel catalyst based on MIL-53(Fe) was synthesized and modified through sublimed sulfur (S-MIL-53(Fe)) to induce a synergistic effect of surface adsorption and persulfate activation. The S-doped modification not only increased the surface area but also accelerated the electron transfer process of the iron cycle. The performance of the newly synthesized S-MIL-53(Fe) adsorptive catalyst was evaluated by chemical adsorption and peroxydisulfate (PDS) activated removal of an emerging pollutants, oxytetracycline (OTC).
View Article and Find Full Text PDF