Publications by authors named "Yulong Jin"

The spontaneous aggregation of amyloid-β (Aβ) leads to neuronal cell death in the brain and causes the development of Alzheimer's disease (AD). The efficient detection of the aggregation state of Aβ holds significant promise for the early diagnosis and subsequent treatment of this neurodegenerative disorder. Currently, most of the fluorescent probes used for the detection of Aβ fibrils share similar recognition moieties, such as the ,-dimethylamino group, ,-diethylamino group, and piperidyl group.

View Article and Find Full Text PDF

Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.

View Article and Find Full Text PDF

Self-replicating molecules and well-defined folded macromolecules are of great significance in the emergence and evolution of life. How they may interconnect and affect each other remains largely elusive. Here, we demonstrate an abiotic system where a single building block can oligomerize to yield either a self-replicating molecule or a foldamer.

View Article and Find Full Text PDF

Background: Small cell lung cancer (SCLC) is known as recalcitrant cancer with high malignancy and heterogeneity. Immunotherapy has changed the treatment pattern of extensive-disease SCLC (ED-SCLC), but the beneficiary population is limited. Therefore, exploring new therapeutic strategies is an urgent clinical problem to be solved for SCLC.

View Article and Find Full Text PDF

Molecular design of small-molecule inhibitors targeting programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway has been recognized as an active research area by the clinical success of cancer immunotherapy. In recent years, using machine learning (ML) methods to accelerate drug design have been confirmed. However, the black box character of ML methods makes model interpretation and ligands optimization obscured.

View Article and Find Full Text PDF

It is desirable but challenging to develop highly-efficient catalysts for the direct synthesis of dimethyl carbonate (DMC) from methanol and CO. The vacancy-mediated incorporation of heteroatom into surface reconstruction is an efficient method of defect engineering for enhancing the catalytic properties. In this work, manganese-doped cerium oxide porous nanoribbons (Mn/CeO-BTC) were prepared derived from a Ce-BTC by a sacrificial template approach.

View Article and Find Full Text PDF

Food safety is the basis for ensuring human survival and development. The threat of heavy metal ions to food safety has become a social concern with the rapid growth of the economy and the accompanying environmental pollution. Some heavy metal ions are highly toxic even at trace levels and pose significant health risks to humans.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with non-small cell lung cancer (NSCLC) that have mutations in the epidermal growth factor receptor (EGFR) can be treated with targeted therapies called EGFR-tyrosine kinase inhibitors (TKIs), but these often lead to drug resistance, prompting the need for new treatment options.
  • Research indicates that ferroptosis, a type of cell death, could help overcome this resistance, but the specific mechanisms in different NSCLC types are still not fully understood.
  • In experiments, EGFR-resistant mutant cells displayed greater sensitivity to ferroptosis inducers and the mTOR inhibitor everolimus, revealing that combining treatments like RAD001 and erastin may be particularly effective against these resistant cancer cell types.
View Article and Find Full Text PDF

Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool.

View Article and Find Full Text PDF

Immunosuppressive myeloid cell populations have been documented in small cell lung cancer (SCLC) subtypes, playing a key role in remolding the tumor microenvironment (TME). However, the cancer-associated transcriptional features of monocytes and tumor-associated macrophages (TAMs) in SCLC remain poorly understood. Herein, we analyzed the molecular features and functions of monocyte/macrophage subsets aiming to inhibit monocyte recruitment and pro-tumor behavior of macrophages.

View Article and Find Full Text PDF

Peptide-derived metal-organic frameworks (PMOFs) have emerged as a class of biomimetic materials with attractive performances in analytical and bioanalytical chemistry. The incorporation of biomolecule peptides gives the frameworks conformational flexibility, guest adaptability, built-in chirality, and molecular recognition ability, which greatly accelerate the applications of PMOFs in enantiomeric separation, affinity separation, and the enrichment of bioactive species from complicated samples. This review focuses on the recent advances in the engineering and applications of PMOFs in selective separation.

View Article and Find Full Text PDF

Bisphenol A (BPA) has attracted growing attention as a well-known environmental pollutant due to its high risk of male reproductive toxicity. In this study, transcriptomics profiling combined with metabolomic techniques was applied to explore the intervention effects of BPA-induced male reproductive toxicity. We demonstrated that cyanidin-3-O-glucoside (C3G) and its main metabolite protocatechuic acid (PCA) significantly increased testosterone and luteinizing hormone (LH) levels in the serum of rats, and improved sperm quality.

View Article and Find Full Text PDF

Microstructured optical fibers (MOFs) provide solutions for breaking through the bottlenecks in areas of high-power transmission and high-efficiency optical waveguides. Other than transporting light waves, MOFs can synergistically combine microfluidics and optics in a single fiber with an unprecedented light path length not readily achievable by planar optofluidic configurations. Here, we demonstrate that hollow-core anti-resonant optical fibers (HcARFs) can significantly enhance Raman scattering by over three orders of magnitude (EF ≈ 5000) compared with a planar setup, due to the joint mechanisms of strong light-matter interaction in the fiber core and the cumulative effect of the fiber.

View Article and Find Full Text PDF

Dynamic foldamers are synthetic folded molecules which can change their conformation in response to an external stimulus and are currently at the forefront of foldamer chemistry. However, constitutionally dynamic foldamers, which can change not only their conformation but also their molecular constitution in response to their environment, are without precedent. We now report a size- and shape-switching small dynamic covalent foldamer network which responds to changes in pH.

View Article and Find Full Text PDF

Using small molecules to inhibit the PD-1/PD-L1 pathway is an important approach in cancer immunotherapy. Natural compounds such as capsaicin, zucapsaicin, 6-gingerol and curcumin have been proposed to have anticancer immunologic functions by downregulating the PD-L1 expression. PD-L1 dimerization promoted by small molecules was recently reported to be a potential mechanism to inhibit the PD-1/PD-L1 pathway.

View Article and Find Full Text PDF

Inhibitors blocking the PD-1/PD-L1 immune checkpoint demonstrate impressive anti-tumor immunity, and small molecule inhibitors disclosed by the Bristol-Myers Squibb (BMS) company have become a hot topic. In this work, by modifying the carbonyl group of BMS-202 into a hydroxyl group to achieve two enantiomers (MS and MR) with a chiral center, we found that this is an effective way to regulate its hydrophobicity and thus to reduce the negative effect of polar solvation free energy, which enhances the stability of PD-L1 dimer/inhibitor complexes. Moreover, we studied the binding modes of BMS-200 and BMS-202-related small molecule inhibitors by molecular dynamics simulation to explore their inhibitory mechanism targeting PD-L1 dimerization.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an estrogenic endocrine disruptor that induces metabolic disorders. Cyanidin-3--glucoside (C3G) has multiple functional activities and is the most abundant anthocyanin belonging to the flavonoid subgroup. This study aimed to investigate the protective effect of C3G on BPA-induced liver lipid metabolism disorder and explore its mechanism via lipidomics analysis.

View Article and Find Full Text PDF

Recovery of noble metals and transforming to functional materials hold great promise in the sustainability of natural resources but remain as a challenge. Herein, the variable chemical microenvironments created by the inorganic-organic hybrid composition of metal-organic frameworks (MOFs) were exploited to tune the metal-support interactions, thus establishing an integrated strategy for recovering and reducing palladium (Pd). Assisted by sonic waves and alcoholic solvent, selective capture of Pd(II) from a complicated matrix to directly afford Pd nanoparticles (NPs) in MOFs can be achieved in one step within several minutes.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a globally utilized industrial chemical and is commonly used as a monomer of polycarbonate plastics and epoxy resins. Recent research reveals that BPA could cause potential adverse biological effects and liver dysfunction. However, the underlying mechanisms of BPA-induced hepatoxicity and gut dysbiosis remain unclear and deserve further study.

View Article and Find Full Text PDF

We herein report a phosphoric-acid-substituted tetraphenylethene (T-P) capable of adapting its geometric configuration and biological activity to the microenvironment upon light irradiation for apoptosis modulation. Different from most ultraviolet-responsive isomerization, T-P undergoes cis-trans isomerization under visible light irradiation, which is biocompatible and thus photo-modulation is possible in living biosystems. By using alkaline phosphatase (ALP) and albumin as dual targets, T-P isomers display different protein binding selectivity, cancer-cell internalization efficiency and apoptosis-inducing ability.

View Article and Find Full Text PDF

β-blockers are a class of medications that are used to treat abnormal heart rhythms and hypertension. Molecularly imprinted polymers (MIPs) capable of selective recognizing and extracting β-blockers from complex biological samples hold great promise in bioanalytical and biomedical applications, but developing such artificial receptor materials is still challenging. Herein, we introduce a simple one-step method for the synthesis of well-defined molecularly imprinted nanospheres in high yield (83.

View Article and Find Full Text PDF

The development of hydrazone bond-oriented epitope imprinting strategy is reported to synthesize the polymeric binders for the selective recognition of a protein-β-microglobulin through either its N- or C-terminal epitope. The dynamic reversibility of hydrazone bond facilitated not only the oriented assembly of the template peptide hydrazides onto the substrate but also the efficient removal of them from the imprinted cavities. The well-defined surface imprinted layer was successfully constructed through the precise control over the polymerization of silicate esters.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an environmental endocrine disruptor. Recent studies have shown an association between decreased spermatogenesis and gut microbiota alteration. However, the potential associations and mechanisms of BPA exposure on spermatogenesis, hormone production, and gut microbiota remain unknown.

View Article and Find Full Text PDF

Nanomedicine with stable light-heat conversion and spatiotemporally controllable drug activation is crucial for the success of photothermal therapy (PTT). Herein, a metal-organic framework (MOF)-based nanoheater with light-triggered multi-responsiveness is engineered to in-situ and on-demand sensitize cancer cells to local hyperthermia. Well-dispersed platinum nanoparticles synthesized inside nanospaces of the MOF are employed as the near-infrared (NIR)-harvesting unit with stable and high light-heat conversion performance.

View Article and Find Full Text PDF

Exosomes are membrane extracellular vesicles secreted by almost all kinds of cells, which are rich in proteins, lipids, and nucleic acids. As a medium of intercellular communication, exosomes play important roles in biological processes and are closely related to the occurrence, and development of many diseases. The isolation of exosomes and downstream analyses can provide important information to the accurate diagnosis and treatment of diseases.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3gs9r7ea07hhgr81a440ojl8a5tfb0od): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once