Publications by authors named "Yulli M Passos"

Uncontrolled assembly/disassembly of physiologically formed liquid condensates is linked to irreversible aggregation. Hence, the quest for understanding protein-misfolding disease mechanism might lie in the studies of protein:nucleic acid coacervation. Several proteins with intrinsically disordered regions as well as nucleic acids undergo phase separation in the cellular context, and this process is key to physiological signaling and is related to pathologies.

View Article and Find Full Text PDF

Conversion of the cellular prion protein (PrP) into the scrapie form (PrP) is the leading step to the development of transmissible spongiform encephalopathies (TSEs), still incurable neurodegenerative disorders. Interaction of PrP with cellular and synthetic ligands that induce formation of scrapie-like conformations has been deeply investigated in vitro. Different nucleic acid (NA) sequences bind PrP and convert it to β-sheet-rich or unfolded species; among such NAs, a 21-mer double-stranded DNA, D67, was shown to induce formation of PrP aggregates that were cytotoxic.

View Article and Find Full Text PDF

Prion diseases have been described in humans and other mammals, including sheep, goats, cattle, and deer. Since mice, hamsters, and cats are susceptible to prion infection, they are often used to study the mechanisms of prion infection and conversion. Mammals, such as horses and dogs, however, do not naturally contract the disease and are resistant to infection, while others, like rabbits, have exhibited low susceptibility.

View Article and Find Full Text PDF

Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions.

View Article and Find Full Text PDF

The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids.

View Article and Find Full Text PDF

Structural conversion of cellular prion protein (PrP) into scrapie PrP (PrP) and subsequent aggregation are key events associated with the onset of transmissible spongiform encephalopathies (TSEs). Experimental evidence supports the role of nucleic acids (NAs) in assisting this conversion. Here, we asked whether PrP undergoes liquid-liquid phase separation (LLPS) and if this process is modulated by NAs.

View Article and Find Full Text PDF

A series of 3-substituted-7-aminoalcoxy-coumarin was designed and evaluated as cholinesterase inhibitors and antioxidants. All compounds were effective in inhibiting AChE with potencies in the nanomolar range. The 3-(4-(dimethylamino)phenyl)-7-aminoethoxy-coumarin (6a) was considered a hit, showing good AChE inhibition potency (IC = 20 nM) and selectivity (IC BuChE/AChE = 354), quite similar to the reference drug donepezil (IC = 6 nM; IC BuChE/AChE = 365), also presenting antioxidant properties, low citotoxicity and good-predicted ADMET properties.

View Article and Find Full Text PDF