Publications by authors named "Yuliya V Bataleva"

Most natural diamonds are formed in Earth's lithospheric mantle; however, the exact mechanisms behind their genesis remain debated. Given the occurrence of electrochemical processes in Earth's mantle and the high electrical conductivity of mantle melts and fluids, we have developed a model whereby localized electric fields play a central role in diamond formation. Here, we experimentally demonstrate a diamond crystallization mechanism that operates under lithospheric mantle pressure-temperature conditions (6.

View Article and Find Full Text PDF

In this article, we report the influence of oxygen concentration in the transition-metal solvent-catalyst on the crystallization processes, morphology, and defect-and-impurity content of diamond crystals. In a series of experiments, the concentration of oxygen ( ) in the growth system was varied by adding FeO to the charge, and the other parameters and conditions of the growth were constant: NiFe solvent-catalyst, = 6.0 GPa, = 1400 °C, and duration of 40 h.

View Article and Find Full Text PDF

Subduction tectonics imposes an important role in the evolution of the interior of the Earth and its global carbon cycle; however, the mechanism of the mantle-slab interaction remains unclear. Here, we demonstrate the results of high-pressure redox-gradient experiments on the interactions between Mg-Ca-carbonate and metallic iron, modeling the processes at the mantle-slab boundary; thereby, we present mechanisms of diamond formation both ahead of and behind the redox front. It is determined that, at oxidized conditions, a low-temperature Ca-rich carbonate melt is generated.

View Article and Find Full Text PDF