Publications by authors named "Yuliya Sedletska"

Unresolved repair of clustered DNA lesions can lead to the formation of deleterious double strand breaks (DSB) or to mutation induction. Here, we investigated the outcome of clusters composed of base lesions for which base excision repair enzymes have different kinetics of excision/incision. We designed multiply damaged sites (MDS) composed of a rapidly excised uracil (U) and two oxidized bases, 5-hydroxyuracil (hU) and 8-oxoguanine (oG), excised more slowly.

View Article and Find Full Text PDF

The DNA mismatch repair (MMR) system participates in cis-diamminedichloroplatinum (II) (cisplatin) cytotoxicity through signaling of cisplatin DNA lesions by yet unknown molecular mechanisms. It is thus of great interest to determine whether specialized function of MMR proteins could be associated with cisplatin DNA damage. The major cisplatin 1,2-d(GpG) intrastrand crosslink and compound lesions arising from misincorporation of a mispaired base opposite either platinated guanine of the 1,2-d(GpG) adduct are thought to be critical lesions for MMR signaling.

View Article and Find Full Text PDF

It has been stipulated that repair of clustered DNA lesions may be compromised, possibly leading to the formation of double-strand breaks (DSB) and, thus, to deleterious events. Using a variety of model multiply damaged sites (MDS), we investigated parameters that govern the formation of DSB during the processing of MDS. Duplexes carrying MDS were inserted into replicative or integrative vectors, and used to transform yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding.

View Article and Find Full Text PDF

cis-diamminedichloroplatinum(II) (cisplatin) is among the most active antitumour agent used in human chemotherapy. The purpose of this review is to give an insight in several molecular mechanisms that mediate the sensitivity of cancer cells to this drug and to show how recent progress in our knowledge on some critical molecular events should lay the foundations of a more rational approach to anticancer drug design. Cisplatin is primarily considered as a DNA-damaging anticancer drug, mainly forming different types of bifunctional adducts in its reaction with cellular DNA.

View Article and Find Full Text PDF