Lipopolysaccharide was obtained from the aerobic moderately halophilic bacterium Halomonas fontilapidosi KR26. The O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide and was examined by chemical methods and by H and C NMR spectroscopy, including H,H COSY, TOCSY, ROESY, and H,C HSQC, and HMBC experiments. The following structure of the linear tetrasaccharide repeating unit was deduced.
View Article and Find Full Text PDFA strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.
View Article and Find Full Text PDFO-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of plant-growth-promoting rhizobacteria Azospirillum doebereinerae GSF71 and studied by sugar analysis along with H and C NMR spectroscopy, including 2D H,H COSY, TOCSY, ROESY, H,C HSQC, and HMBC experiments. It was established that the polysaccharide is linear and consists of tetrasaccharide repeating units with the following structure.
View Article and Find Full Text PDFO-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of nitrogen-fixing bacterium Azospirillum fermentarium CC-LY743 (IBPPM 578) and was studied by sugar analysis along with H and C NMR spectroscopy, including H,H COSY, TOCSY, ROESY, and H,C HSQC and HMBC experiments. The polysaccharide was found to be linear and to consist of alterating α-l-fucose and α-d-mannose residues in tetrasaccharide repeating units of the following structure: →2)-α-D-Manp-(1 → 3)-α-L-Fucp-(1 → 3)-α-D-Manp-(1 → 3)-α-L-Fucp-(1→.
View Article and Find Full Text PDFAn O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of bacteria Pseudomonas putida TSh-18, capable of degrading non-ionogenic technical detergents. The polysaccharide was found to contain a rarely occurring sugar derivative 4,6-dideoxy-4-[(R)-3-hydroxybutanoylamino]-d-galactose [d-Fucp4N(RHb)]. Sugar and methylation analyses, Smith degradation, solvolysis with CFCOH, and H and C NMR spectroscopy enabled elucidation of the following structure of the branched trisaccharide repeating units of the polysaccharide.
View Article and Find Full Text PDFAn O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide isolated by the phenol-water extraction from the halotolerant soil bacteria Azospirillum halopraeferens type strain Au4. The polysaccharide was studied by sugar and methylation analyses, selective cleavages by Smith degradation and solvolysis with trifluoroacetic acid, one- and two-dimensional (1)H and (13)C NMR spectroscopy. The following masked repeating structure of the O-specific polysaccharide was established: →3)-α-L-Rhap2Me-(1→3)-[β-D-Glcp-(1→4)]-α-D-Fucp-(1→2)-β-D-Xylp-(1→, where non-stoichiometric substituents, an O-methyl group (~45%) and a side-chain glucose residue (~65%), are shown in italics.
View Article and Find Full Text PDFTwo polysaccharides were obtained by mild acid degradation of the lipopolysaccharide of associative nitrogen-fixing bacteria Azospirillum brasilense Jm125A2 isolated from the rhizosphere of a pearl millet. The following structures of the polysaccharides were established by sugar and methylation analyses, Smith degradation, and (1)H and (13)C NMR spectroscopy: [Formula: see text] Structure 1 has been reported earlier for a polysaccharide from A. brasilense S17 (Fedonenko YP, Konnova ON, Zdorovenko EL, Konnova SA, Zatonsky GV, Shaskov AS, Ignatov VV, Knirel YA.
View Article and Find Full Text PDFLipopolysaccharides from closely related Azospirillum brasilense strains, Sp246 and SpBr14, were obtained by phenol-water extraction. Mild acid hydrolysis of the lipopolysaccharides followed by GPC on Sephadex G-50 resulted in polysaccharide mixtures. On the basis of sugar and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy data, it was concluded that both bacteria possess the same two distinct polysaccharides having structures 1 and 2: [structure: see text].
View Article and Find Full Text PDFLipopolysaccharide was obtained by phenol-water extraction from dried bacterial cells of Azospirillum brasilense type strain Sp7. Mild acid hydrolysis of the lipopolysaccharide followed by GPC on Sephadex G-50 resulted in a polysaccharide mixture, which was studied by composition and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy. The following polysaccharide structures were established, where italics indicate a non-stoichiometric (∼40%) 2-O-methylation of l-rhamnose.
View Article and Find Full Text PDFA high-molecular mass polysaccharide fraction was obtained by mild acid hydrolysis of the lipopolysaccharide of diazotrophic rhizobacterium Azospirillum brasilense SR80 followed by GPC on Sephadex G-50 Superfine. Studies by composition and methylation analyses, Smith degradation, and 1D and 2D (1)H and (13)C NMR spectroscopy demonstrated the presence of two structurally distinct repeating units having the following structures: It seems likely, although not proved, that these are repeats of two distinct polysaccharides rather than they build blocks within the same polysaccharide chain. The former structure is new, whereas the latter is closely related to the O-polysaccharide structure of A.
View Article and Find Full Text PDFTwo types of neutral O-polysaccharides were obtained by mild acid degradation of the lipopolysaccharide isolated by phenol-water extraction from the asymbiotic diazotrophic rhizobacterium Azospirillum brasilense Jm6B2. The following structure of the major O-polysaccharide was established by composition and methylation (ethylation) analyses, Smith degradation, and 1D and 2D (1)H and (13)C NMR spectroscopy: [structure: see text] where a non-stoichiometric (~60%) 3-O-methylation of D-rhamnose is indicated by italics.
View Article and Find Full Text PDFA neutral O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide isolated by phenol/water extraction from the asymbiotic diazotrophic rhizobacterium Azospirillum lipoferum SR65. The following structure of the O-polysaccharide was established by composition and methylation analyses, Smith degradation, and (1)H and (13)C NMR spectroscopy, including a 2D ROESY experiment: formula see text.
View Article and Find Full Text PDFA mixture of two structurally distinct neutral O-polysaccharides was obtained by mild acid degradation of the lipopolysaccharide isolated by the phenol/water extraction from the asymbiotic diazotrophic rhizobacterium Azospirillum brasilense S17. The following structures of the O-polysaccharides were established by composition and methylation analyses, Smith degradation, and 1H and 13C NMR spectroscopy, including a 2D NOESY experiment: [Formula: see text] where L-Rha2Me stands for 2-O-methyl-L-rhamnose and SHb for the (S)-3-hydroxybutanoyl group. The occurrence of two distinct polysaccharides is reported for the first time in Azospirillum spp.
View Article and Find Full Text PDFA neutral O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of the plant-growth-promoting bacterium Azospirillum lipoferum Sp59b. On the basis of sugar and methylation analyses along with 1D and 2D (1)H and (13)C NMR spectroscopy, including a NOESY experiment, the following structure of the branched hexasaccharide repeating unit of the O-polysaccharide was established: [carbohydrate structure: see text].
View Article and Find Full Text PDFThe O-polysaccharide was isolated from the lipopolysaccharide of the plant-growth-promoting bacterium Azospirillum irakense KBC1 and studied by sugar and methylation analyses, Smith degradation and 1H and 13C NMR spectroscopy, including 1H, 13C HSQC and NOESY experiments for linkage and sequence analysis. The following structure of the branched hexasaccharide repeating unit of the O-polysaccharide with an unusually long side chain was established: [carbohydrate structure: see text].
View Article and Find Full Text PDFAn O-specific polysaccharide was isolated from the lipopolysaccharide of a plant-growth-promoting bacterium Azospirillum brasilense Sp245 and studied by sugar analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY. The polysaccharide was found to be a new rhamnan with a pentasaccharide repeating unit having the following structure:-->2)-beta-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->
View Article and Find Full Text PDF