The human neocortex has a huge surface area with unique cytoarchitectonics, most of which is concealed in sulci. Some cytoarchitectonic fields are associated with macroscopic landmarks. In particular, the primary visual field 17 is associated with the calcarine sulcus.
View Article and Find Full Text PDFRecent morphological data on human brain development are quite fragmentary. However, they are highly requested for a number of medical practices, educational programs, and fundamental research in the fields of embryology, cytology and histology, neurology, physiology, path anatomy, neonatology, and others. This paper provides the initial information on the new online Human Prenatal Brain Development Atlas (HBDA).
View Article and Find Full Text PDFSpaceflight may cause hypogravitational motor syndrome (HMS). However, the role of the nervous system in the formation of HMS remains poorly understood. The aim of this study was to estimate the effects of space flights on the cytoskeleton of the neuronal and glial cells in the spinal cord and mechanoreceptors in the toes of thick-toed geckos ( GRAY, 1864).
View Article and Find Full Text PDFBackground: The sympathetic nervous system plays an important role in the regulation of pancreatic exocrine and endocrine secretion. The results of experimental studies also demonstrate the involvement of the sympathetic nervous system in the regulation of endocrine cell differentiation and islet formation during the development of the pancreas. However, the prenatal development of sympathetic innervation of the human pancreas has not yet been studied.
View Article and Find Full Text PDFObjectives: Congenital hyperinsulinism (CHI) is a group of rare genetic disorders characterized by insulin overproduction. CHI causes life-threatening hypoglycemia in neonates and infants. Bloom syndrome is a rare autosomal recessive disorder caused by mutations in the gene resulting in genetic instability and an elevated rate of spontaneous sister chromatid exchanges.
View Article and Find Full Text PDFHumans and animals adapt to space flight conditions. However, the adaptive changes of fully formed organisms differ radically from the responses of vertebrate embryos, foetuses, and larvae to space flight. Development is associated with active cell proliferation and the formation of organs and systems.
View Article and Find Full Text PDFReptiles are a rare model object for space research. However, some reptile species demonstrate effective adaptation to spaceflight conditions. The main scope of this review is a comparative analysis of reptile experimental exposure in weightlessness, demonstrating the advantages and shortcomings of this model.
View Article and Find Full Text PDFIn the human pancreas, various forms of endocrine cell arrangement are found: single endocrine cells, endocrine cell clusters, and mantel, bipolar and mosaic cell (mixed) islets. Our aim was to analyse the distribution and dynamics of insulin-, glucagon- and somatostatin-containing cells within the various forms of endocrine pancreas arrangement during human prenatal development and in adults and to suggest a mechanism of change in the endocrine cell ratio in adult islets. Pancreatic autopsies derived from human foetuses from the 10 to the 40 weeks of development and from adults were examined using histological, immunohistochemical and morphometric methods.
View Article and Find Full Text PDFBackground: Expression of the intermediate filament protein vimentin has been recently observed in the pancreatic islet β- and α-cells of humans with type 2 diabetes mellitus. It was suggested that the presence of vimentin in endocrine cells may indicate islet tissue renewal, or potentially represent the dedifferentiation of endocrine cells, which could contribute to the onset of type 2 diabetes or islet cell dysfunction.
Aim: To analyze the expression of vimentin in pancreatic β- and α-cells of macrosomic infants of diabetic and nondiabetic mothers.
In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas.
View Article and Find Full Text PDF