The interactions of non-ionic surfactant Triton X-100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non-ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 x 10(-6) M, Triton X-100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant-protein complexes (start aggregates) with initial radii of 46 nm.
View Article and Find Full Text PDFOrdered and amorphous protein aggregation causes numerous diseases. Tobacco mosaic virus coat protein for many decades serves as the classical model of ordered protein aggregation ("polymerization"). It was also found to be highly prone to heat-induced amorphous aggregation and the rate of this aggregation could be easily manipulated by changes in solution ionic strength and temperature.
View Article and Find Full Text PDF