Small RNAs are involved in diverse cellular processes, including plant immunity to pathogens. Here, we report that miR158a negatively regulates plant immunity to the oomycete pathogen Phytophthora parasitica in Arabidopsis thaliana. By performing real-time quantitative PCR, transient expression, and RNA ligase-mediated 5' rapid amplification of cDNA ends assays, we demonstrate that miR158a downregulates AtTN7 expression by cleaving its 3'-untranslated region.
View Article and Find Full Text PDFPhytophthora infestans is a notorious oomycete pathogen that causes potato late blight. It secretes numerous effector proteins to manipulate host immunity. Understanding mechanisms underlying their host cell manipulation is crucial for developing disease resistance strategies.
View Article and Find Full Text PDFThe root endophytic fungus Serendipita indica establishes beneficial symbioses with a broad spectrum of plants and enhances host resilience against biotic and abiotic stresses. However, little is known about the mechanisms underlying S. indica-mediated plant protection.
View Article and Find Full Text PDFPhytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P.
View Article and Find Full Text PDFPhytophthora infestans is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding P.
View Article and Find Full Text PDFis a highly destructive oomycete plant pathogen that is capable of infecting a wide range of hosts including many agricultural cash crops, fruit trees, and ornamental garden plants. One of the most important diseases caused by worldwide is black shank of tobacco. Rapid, sensitive, and specific pathogen detection is crucial for early rapid diagnosis, which can facilitate effective disease management.
View Article and Find Full Text PDFOomycetes are diploid eukaryotic microorganisms that seriously threaten sustainable crop production. MicroRNAs (miRNAs) and corresponding natural antisense transcripts (NATs) are important regulators of multiple biological processes. However, little is known about their roles in plant immunity against oomycete pathogens.
View Article and Find Full Text PDFNonhost resistance refers to resistance of a plant species to all genetic variants of a non-adapted pathogen. Such resistance has the potential to become broad-spectrum and durable crop disease resistance. We previously employed and a forward genetics approach to identify plant mutants susceptible to the nonhost pathogen , which resulted in identification of the T-DNA insertion mutant ().
View Article and Find Full Text PDFOomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an gene, , plays a major role in the regulation of effector genes hence the pathogenicity of .
View Article and Find Full Text PDFMitochondrial function depends on the RNA processing of mitochondrial gene transcripts by nucleus-encoded proteins. This posttranscriptional processing involves the large group of nuclear-encoded pentatricopeptide repeat (PPR) proteins. Mitochondrial processes represent a crucial part in animal immunity, but whether mitochondria play similar roles in plants remains unclear.
View Article and Find Full Text PDFOomycetes represent a unique group of plant pathogens that are phylogenetically distant from true fungi and cause significant crop losses and environmental damage. Understanding of the genetic basis of host plant susceptibility facilitates the development of novel disease resistance strategies. In this study, we report the identification of an Arabidopsis thaliana T-DNA mutant with enhanced resistance to Phytophthora parasitica with an insertion in the Raf-like mitogen-activated protein kinase kinase kinase gene Raf36.
View Article and Find Full Text PDFFracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs.
View Article and Find Full Text PDFIn plants, recognition of small secreted peptides, such as damage/danger-associated molecular patterns (DAMPs), regulates diverse processes, including stress and immune responses. Here, we identified an SGPS (Ser-Gly-Pro-Ser) motif-containing peptide, Nicotiana tabacum NtPROPPI, and its two homologs in Nicotiana benthamiana, NbPROPPI1 and NbPROPPI2. Phytophthora parasitica infection and salicylic acid (SA) treatment induced NbPROPPI1/2 expression.
View Article and Find Full Text PDFMitochondria and chloroplasts play key roles in plant-pathogen interactions. Cytidine-to-uridine (C-to-U) RNA editing is a critical posttranscriptional modification in mitochondria and chloroplasts that is specific to flowering plants. Multiple organellar RNA-editing factors (MORFs) form a protein family that participates in C-to-U RNA editing, but little is known regarding their immune functions.
View Article and Find Full Text PDFPathogens secret a plethora of effectors into the host cell to modulate plant immunity. Analysing the role of effectors in altering the function of their host target proteins will reveal critical components of the plant immune system. Here we show that Phytophthora infestans RXLR effector PITG20303, a virulent variant of AVRblb2 (PITG20300) that escapes recognition by the resistance protein Rpi-blb2, suppresses PAMP-triggered immunity (PTI) and promotes pathogen colonization by targeting and stabilizing a potato MAPK cascade protein, StMKK1.
View Article and Find Full Text PDFPhytophthora species are destructive plant pathogens that cause significant crop losses worldwide. To understand plant susceptibility to oomycete pathogens and to explore novel disease resistance strategies, we employed the Arabidopsis thaliana-Phytophthora parasitica model pathosystem and screened for A. thaliana T-DNA insertion mutant lines resistant to P.
View Article and Find Full Text PDFLate blight is considered the most renowned devastating potato disease worldwide. Resistance gene ()-based resistance to late blight is the most effective method to inhibit infection by the causal agent . However, the limited availability of resistant potato varieties and the rapid loss of resistance, caused by virulence variability, make disease control rely on fungicide application.
View Article and Find Full Text PDFProteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P.
View Article and Find Full Text PDFMultiple enzyme systems are being increasingly used for their high-efficiency and co-immobilization is a key technology to lower the cost and improve the stability of enzymes. In this study, poly glycidyl methacrylate (PGMA) spheres were synthesized using suspension polymerization, and were used as a support to co-immobilize glucose oxidase (GOx) and catalase (CAT). Surface modification was carried out via a combination of plasma and amination to promote the properties of the catalyzer.
View Article and Find Full Text PDFPlants have evolved powerful immune systems to recognize pathogens and avoid invasions, but the genetic basis of plant susceptibility is less well-studied, especially to oomycetes, which cause disastrous diseases in many ornamental plants and food crops. In this research, we identified a negative regulator of plant immunity to the oomycete Phytophthora parasitica, AtRTP5 (Arabidopsis thaliana Resistant to Phytophthora 5), which encodes a WD40 repeat domain-containing protein. The AtRTP5 protein, which was tagged with green fluorescent protein (GFP), is localized in the nucleus and plasma membrane.
View Article and Find Full Text PDFOomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question.
View Article and Find Full Text PDFTobacco black shank, caused by , is one of the most notorious tobacco diseases and causes huge economic losses worldwide. Understanding the genetic variation of populations is essential to the development of disease control measures. In this research, 210 simple sequence repeat (SSR) markers for were identified, 10 of which were polymorphic among nine reference strains.
View Article and Find Full Text PDFRXLR effectors encoded by Phytophthora species play a central role in pathogen-plant interactions. An understanding of the biological functions of RXLR effectors is conducive to the illumination of the pathogenic mechanisms and the development of disease control strategies. However, the virulence function of Phytophthora parasitica RXLR effectors is poorly understood.
View Article and Find Full Text PDF