Publications by authors named "Yulin Yao"

It has been reported that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in long-term neurological symptoms such as cognitive dysfunction, however the specific mechanisms underlying this phenomenon remain unclear. Initially, we confirmed a reduction in the level of synaptic proteins in SH-SY5Y neurons following SARS-CoV-2 infection. SARS-CoV-2 Nsps are crucial for the efficient replication of the virus and play important roles in the interaction between virus and host cell.

View Article and Find Full Text PDF
Article Synopsis
  • The NSP14 protein of SARS-CoV-2 aids viral replication and boosts the host's immune system by enhancing the production of cytokines.
  • The study reveals that NSP14 activates the AP-1 pathway by increasing the phosphorylation of ERK, which then promotes AP-1 transcription.
  • NSP14 interacts with MEK, leading to increased levels of phosphorylated MEK, and the use of a MEK inhibitor partially blocks cytokine production, indicating a novel mechanism for NSP14's proinflammatory response.
View Article and Find Full Text PDF

Bats are the natural reservoir hosts of some viruses, some of which may spill over to humans and cause global-scale pandemics. Different from humans, bats may coexist with high pathogenic viruses without showing symptoms of diseases. As one of the most important first defenses, bat type I IFNs (IFN-Is) were thought to play a role during this virus coexistence and thus were studied in recent years.

View Article and Find Full Text PDF

As one of the deadliest viruses, Ebola virus (EBOV) causes lethal hemorrhagic fevers in humans and nonhuman primates. The suppression of innate immunity leads to robust systemic virus replication of EBOV, leading to enhanced transmission. However, the mechanism of EBOV-host interaction is not fully understood.

View Article and Find Full Text PDF

Gaining insight into the cell-entry mechanisms of swine acute diarrhea syndrome coronavirus (SADS-CoV) is critical for investigating potential cross-species infections. Here, we demonstrated that pretreatment of host cells with tunicamycin decreased SADS-CoV attachment efficiency, indicating that N-linked glycosylation of host cells was involved in SADS-CoV entry. Common N-linked sugars Neu5Gc and Neu5Ac did not interact with the SADS-CoV S1 protein, suggesting that these molecules were not involved in SADS-CoV entry.

View Article and Find Full Text PDF

As zinc finger protein transcription factors (TFs), the molecular mechanism of Cys-Cys-Cys-His (CCCH) TFs in regulating plant development, growth and stress response has been well studied. However, the roles of CCCH TFs in fruit ripening are still obscure. Herein, we report that MaCCCH33-like2 TF and its associated proteins modulate the fruit softening of 'Fenjiao' bananas.

View Article and Find Full Text PDF

Zoonotic transmission of coronaviruses (CoVs) poses a serious public health threat. Swine acute diarrhea syndrome coronavirus (SADS-CoV), originating from a bat HKU2-related CoV, causes devastating swine diseases and poses a high risk of spillover to humans. Currently, licensed therapeutics that can prevent potential human outbreaks are unavailable.

View Article and Find Full Text PDF

Banana is a typical subtropical fruit, sensitive to chilling injuries and prone to softening disorder. However, the underlying regulatory mechanisms of the softening disorder caused by cold stress remain obscure. Herein, we found that BEL1-LIKE HOMEODOMAIN transcription factor 1 (MaBEL1) and its associated proteins regulate the fruit softening and ripening process.

View Article and Find Full Text PDF

The calibration of the non-orthogonal error in nanoscale measurements is of paramount importance for analytical measuring instruments. Particularly, the calibration of non-orthogonal errors in atomic force microscopy (AFM) is essential for the traceable measurements of novel materials and two-dimensional (2D) crystals. The 2D self-traceable grating with a theoretical non-orthogonal angle of less than 0.

View Article and Find Full Text PDF

Chilling injury (CI) is a major problem that affects fruit quality and ripening. Herein, chilling stress severely inhibited the expression of transcription factor MaC2H2-like. MaC2H2-like activates the expression of genes associated with flavonoid synthesis (MaC4H-like1, Ma4CL-like1, MaFLS, and MaFLS3) and fatty acid desaturation (MaFAD6-2 and MaFAD6-3), the leading indicators of chilling tolerance.

View Article and Find Full Text PDF

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.

View Article and Find Full Text PDF

In the last 2 decades, pathogens originating in animals may have triggered three coronavirus pandemics, including the coronavirus disease 2019 pandemic. Thus, evaluation of the spillover risk of animal severe acute respiratory syndrome (SARS)-related coronavirus (SARSr-CoV) is important in the context of future disease preparedness. However, there is no analytical framework to assess the spillover risk of SARSr-CoVs, which cannot be determined by sequence analysis alone.

View Article and Find Full Text PDF

Pesticides could induce long-term impacts on aquatic ecosystem via transgenerational toxicity. However, for many chiral pesticides, the potential enantioselectivity of transgenerational toxicity has yet to be fully understood. In this study, we used zebrafish as models to evaluate the maternal transfer risk of tebuconazole (TEB), which is a chiral triazole fungicide currently used worldwide and has been frequently detected in surface waters.

View Article and Find Full Text PDF
Article Synopsis
  • Hundreds of sarbecoviruses exist in bats, but only a few can infect cells using the ACE2 receptor, crucial for SARS-CoV and -2; most are ACE2-independent and remain unstudied.
  • Researchers found that trypsin (a protease) can aid viral entry for some ACE2-independent sarbecoviruses and tested this on bat sarbecovirus in human and bat cells.
  • Their findings highlight a unique dependency on trypsin for these viruses' replication, indicating that understanding this mechanism is vital for future vaccine development and virus isolation efforts.
View Article and Find Full Text PDF

Papaya fruit is widely grown in tropical regions because of its sweet taste, vibrant color, and the huge number of health benefits it provides. Melatonin is an essential hormone that governs many plants' biological processes. In the current study, the impact of melatonin on fruit ripening and deterioration in postharvest papaya fruit was explored.

View Article and Find Full Text PDF

Cold stress adversely affects plant production, both qualitatively and quantitatively. Banana (Musa acuminata) is sensitive to cold stress and suffers chilling injury (CI) when stored under 11°C, causing abnormal fruit softening. However, the mechanism underlying the abnormal fruit softening due to CI remains obscure.

View Article and Find Full Text PDF

DNA damage inducible transcript 3 (DDIT3, also known as CHOP) belongs to the CCAAT/enhancer-binding protein (C/EBP) family and plays an essential role in endoplasmic reticulum stress. Here, we characterized the potential role of the Chinese tree shrew (Tupaia belangeri chinensis) DDIT3 (tDDIT3) in viral infections. The tDDIT3 protein is highly conserved and has a species-specific insertion of the SQSS repeat upstream of the C-terminal basic-leucine zipper (bZIP) domain.

View Article and Find Full Text PDF

Stimulator of IFN genes (STING) is a key molecule that binds to cyclic dinucleotides produced by the cyclic GMP-AMP synthase to activate IFN expression and autophagy in the fight against microbial infection. The regulation of STING in the activation of IFN expression has been extensively reported, whereas the regulation of STING in the initiation of autophagy is still insufficiently determined. IFN-inducible guanylate-binding proteins (GBPs) are central to the cell-autonomous immunity in defending a host against viral, bacterial, and protozoan infections.

View Article and Find Full Text PDF

The recent emergence and spread of zoonotic viruses highlights that animal-sourced viruses are the biggest threat to global public health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an HKU2-related bat coronavirus that was spilled over from bats to swine, causing large-scale outbreaks of severe diarrhea disease in piglets in China. Unlike other porcine coronaviruses, SADS-CoV possesses broad species tissue tropism, including primary human cells, implying a significant risk of cross-species spillover.

View Article and Find Full Text PDF

Chinese tree shrews (Tupaia belangeri chinensis) are increasingly used as an alternative experimental animal to non-human primates in studying viral infections. Guanylate-binding proteins (GBP) belong to interferon (IFN)-inducible GTPases and defend the mammalian cell interior against diverse invasive pathogens. Previously, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5, and tGBP7) and found that tGBP1 showed antiviral activity against vesicular stomatitis virus (VSV) and type 1 herpes simplex virus (HSV-1) infections.

View Article and Find Full Text PDF

Melanoma differentiation-associated gene 5 (MDA5) is a key cytoplasmic dsRNA sensor. Upon binding to invading viral RNA, activated MDA5 is recruited to mitochondria and interacts with mitochondrial antiviral signaling gene (MAVS) to initiate innate antiviral immune responses. The elegant regulation of this process remains elusive.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The models that can accurately resemble human-relevant responses to viral infection are lacking. Here, a biomimetic human disease model on chip that allows to recapitulate lung injury and immune responses induced by SARS-CoV-2 in vitro at organ level is created.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is the cause of severe liver disease in many people. The restricted species tropism of HCV hinders the research and development of drugs and vaccines. The Chinese tree shrew () is a close relative of primates and can be infected by HCV, but the underlying mechanisms are unknown.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/ HCoV-19 pathogen is essential for controlling the outbreak and for testing valid prophylactics or therapeutics based on animal model studies. Here, different aged Chinese tree shrews (adult group, 1 year old; old group, 5-6 years old), which are close relatives to primates, were infected with SARS-CoV-2.

View Article and Find Full Text PDF