Publications by authors named "Yulin Su"

Acute myeloid leukemia (AML) cells resist differentiation stimuli despite high expression of innate immune receptors, such as Toll-like receptor 9 (TLR9). We previously demonstrated that targeting Signal Transducer and Activator of Transcription 3 (STAT3) using TLR9-targeted decoy oligodeoxynucleotide (CpG-STAT3d) increases immunogenicity of human and mouse AML cells. Here, we elucidated molecular mechanisms of inv(16) AML reprogramming driven by STAT3-inhibition/TLR9-activation .

View Article and Find Full Text PDF

Comprehensive molecular analyses of metastatic hepatocellular carcinoma (HCC) are lacking. Here, we generate multi-omic profiling of 257 primary and 176 metastatic regions from 182 HCC patients. Primary tumors rich in hypoxia signatures facilitated polyclonal dissemination.

View Article and Find Full Text PDF

Objective: Rhesus monkeys are increasingly used in biomedical research, which makes their hematological and biochemical parameters increasingly important in preclinical research. Since age and sex can influence blood parameters, establishing reference intervals for such parameters based on age and sex becomes along with identifying the effect of age and sex on those parameters.

Methods: A total of 1385 healthy Chinese rhesus monkeys (548 males and 837 females) anesthetized with ketamine were selected and segregated by age (six groups) and sex.

View Article and Find Full Text PDF

A 50-year-old woman underwent 18 F-FDG PET/CT to evaluate possible abdominal malignancy, which was revealed by CT. The images showed a large cystic-solid lesion with peripherally increased FDG activity in the left mid-abdomen. Histopathology of the excised lesion confirmed a jejunal cavernous hemangioma.

View Article and Find Full Text PDF

To investigate the potential effects and mechanism of wogonin on dextran sulfate sodium (DSS)-induced colitis, 70 male mice were administered wogonin (12.5, 25, 50 mg·kg ·d , i.g.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Gegen Qinlian decoction (GQD) is a traditional Chinese medicine derived from Treatise on febrile diseases and is clinically used for the treatment of acute ulcerative colitis (UC). However, the potential mechanism of GQD treatment for UC remains elusive.

Aim Of Study: In this study, we aimed to explore the involvement of gut microbiota-related tryptophan metabolism in mediating protective effects of GQD against intestinal barrier damage.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Dahuang Mudan decoction (DMD) is a classic prescription for treating intestinal carbuncle from Zhang Zhongjing's "Essentials of the Golden Chamber" in the Han Dynasty. Recent studies also prove that DMD has a therapeutic effect on ulcerative colitis (UC), but its mechanism is still unclear.

Aim Of Study: In this study, we aim to assess the therapeutic effect of DMD on DSS-induced chronic colitis in mice and deeply expound its underlying regulative mechanism.

View Article and Find Full Text PDF

Background: Emodin is an active ingredient of traditional Chinese medicine Rheum palmatum L. and Polygonum cuspidatum, which possesses anti-inflammatory and intestinal mucosal protection effects. Our previous study found that emodin significantly alleviated ulcerative colitis induced by sodium dextran sulfate (DSS).

View Article and Find Full Text PDF

T lymphocyte infiltration with immunotherapy potentially suppresses most devastating brain tumors. However, local immune privilege and tumor heterogeneity usually limit the penetration of immune cells and therapeutic agents into brain tumors, leading to tumor recurrence after treatment. Here, a rabies virus glycoprotein (RVG)-camouflaged gold yarnball (RVG@GY) that can boost the targeting efficiency at a brain tumor dual hierarchy- and RVG-mediated spinal cord transportation, facilitating the decrease of tumor heterogeneity for T cell infiltration, is developed.

View Article and Find Full Text PDF

Context: Chinese herb Huangqin decoction (HQD) can regulate intestinal flora in ulcerative colitis (UC) mice.

Objective: Our study clarifies the mechanism of HQD in regulating the intestinal flora of UC mice.

Materials And Methods: Male C57BL/6 mice were randomly divided into six groups: Control, Model (3% DSS), Sulfasalazine (500 mg/kg), HQD-L (250 mg/kg), HQD-M (500 mg/kg), and HQD-H (1000 mg/kg) groups.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) inhibitors have emerged as a new class of antitumor agent for various types of tumors. MPT0B291, a novel selective inhibitor of HDAC6, demonstrated significant antiproliferative activity in various human cancer cell types. However, MPT0B291 has very low water solubility, which limits its clinical use for cancer therapy.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory disease of the gastrointestinal tract, which is closely related to gut barrier dysfunction. Emerging evidence shows that interleukin-22 (IL-22) derived from group 3 innate lymphoid cells (ILC3s) confers benefits on intestinal barrier, and IL-22 expression is controlled by aryl hydrocarbon receptor (AhR). Previous studies show that baicalein protects the colon from inflammatory damage.

View Article and Find Full Text PDF

Background: During acute myeloid leukemia (AML) growth, the bone marrow (BM) niche acquires significant vascular changes that can be offset by therapeutic blast cytoreduction. The molecular mechanisms of this vascular plasticity remain to be fully elucidated. Herein, we report on the changes that occur in the vascular compartment of the FLT3-ITD+ AML BM niche pre and post treatment and their impact on leukemic stem cells (LSCs).

View Article and Find Full Text PDF

We report here on a novel pro-leukemogenic role of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) that interferes with microRNAs (miRNAs) biogenesis in acute myeloid leukemia (AML) blasts. We showed that FLT3-ITD interferes with the canonical biogenesis of intron-hosted miRNAs such as miR-126, by phosphorylating SPRED1 protein and inhibiting the "gatekeeper" Exportin 5 (XPO5)/RAN-GTP complex that regulates the nucleus-to-cytoplasm transport of pre-miRNAs for completion of maturation into mature miRNAs. Of note, despite the blockage of "canonical" miRNA biogenesis, miR-155 remains upregulated in FLT3-ITD+ AML blasts, suggesting activation of alternative mechanisms of miRNA biogenesis that circumvent the XPO5/RAN-GTP blockage.

View Article and Find Full Text PDF

Despite recent advances, non-Hodgkin's B cell lymphoma patients often relapse or remain refractory to therapy. Therapeutic resistance is often associated with survival signaling via nuclear factor κB (NF-κB) transcription factor, an attractive but undruggable molecular target. In this study, we describe a bipartite inhibitor comprising a NF-κB-specific decoy DNA tethered to a CpG oligodeoxynucleotide (ODN) targeting Toll-like receptor-9-expressing B cell lymphoma cells.

View Article and Find Full Text PDF

The tumor microenvironment affects the outcome of radiotherapy against head and neck squamous cell carcinoma (HNSCC). We recently found that tolerogenic myeloid cells accumulate in the circulation of HNSCC patients undergoing radiotherapy. Here, we analyzed tumor-containing lymph node biopsies collected from these patients.

View Article and Find Full Text PDF

The crucial balance of stability in blood-circulation and tumor-specific delivery has been suggested as one of the challenges for effective bench-to-bedside translation of nanomedicines (NMs). Herein, we developed a supramolecularly enabled tumor-extracellular (T) pH-triggered NM that can maintain the micellar structure with the entrapped-drug during systemic circulation and progressively release drug in the tumor by rightly sensing heterogeneous tumor-pH. Desacetylvinblastine hydrazide (DAVBNH), a derivative of potent anticancer drug vinblastine, was conjugated to an aliphatic ketone-functionalized poly(ethylene glycol)-b-poly(amino acid) copolymer and the hydrolytic stability of the derived hydrazone bond was efficiently tailored by exploiting the compartmentalized structure of polymer micelle.

View Article and Find Full Text PDF

As one of the ligands of aryl hydrocarbon receptor (AhR), baicalein, isolated from , has been proved to exert potential therapeutic effects on ulcerative colitis (UC), but its therapeutic mechanism remains obscure. Authentically, ulcerative colitis can be alleviated by regulating the differentiation of naïve CD4 T cells via AhR activation. So, our study planned to prove the hypothesis that baicalein protected mice against UC by regulating the balance of Th17/Treg cells via AhR activation.

View Article and Find Full Text PDF

This study explores the amounts of common chemical ultraviolet (UV) filters (i.e., avobenzone, bemotrizinol, ethylhexyl triazone, octocrylene, and octyl methoxycinnamate) in cosmetics and the human stratum corneum.

View Article and Find Full Text PDF

Currently, the potential role of the alterations occurring in the liver immune system and intestinal flora in liver injury remains unknown. Our study aimed to explore the impacts of intestinal microbial barrier damage induced by ceftriaxone on liver immunity. We developed the BALB/c mice model by administering ceftriaxone.

View Article and Find Full Text PDF

Compact nanohybrids can potentially unite various therapeutic features and reduce side effects for precise cancer therapy. However, the poor accumulation and limited tumor penetration of drugs at the tumor impede the manifestation of nanomedicine. We developed a rabies virus glycoprotein (RVG)-amplified hierarchical targeted hybrid that acts as a stealthy and magnetolytic carrier that transports dual tumor-penetrating agents incorporating two drugs (boron-doped graphene quantum dots (B-GQDs)/doxorubicin and pH-responsive dendrimers (pH-Den)/palbociclib).

View Article and Find Full Text PDF

NF-κB is a key regulator of inflammation and cancer progression, with an important role in leukemogenesis. Despite its therapeutic potential, targeting NF-κB using pharmacologic inhibitors has proven challenging. Here, we describe a myeloid cell-selective NF-κB inhibitor using an miR-146a mimic oligonucleotide conjugated to a scavenger receptor/Toll-like receptor 9 agonist (C-miR146a).

View Article and Find Full Text PDF

Neutrophils are early wound healing and inflammation regulators that, due to functional plasticity, can adopt either pro- or antitumor functions. Until recently, beclin-1 was a protein known mainly for its role as a critical regulator of autophagy. In this issue of the JCI, Tan et al.

View Article and Find Full Text PDF

Elevated levels of microRNAs in cancer cells are often associated with oncogenic effects and thus provide potential therapeutic targets. However, the lack of efficient delivery methods for synthetic miRNA inhibitors, antagomiR, or anti-miR oligonucleotides hindered clinical translation of such strategies. We recently developed an approach for targeted delivery of synthetic, 2'-O-methyl-modified antagomiR molecules to normal and malignant myeloid cells and B cells by tethering to the single-stranded, phosphorothioate oligodeoxynucleotides (PSO).

View Article and Find Full Text PDF

Dual-targeted delivery of drugs and energy by nanohybrids can potentially alleviate side effects and improve the unique features required for precision medicine. To realize this aim, however, the hybrids which are often rapidly removed from circulation and the piled up tumors periphery near the blood vessels must address the difficulties in low blood half-lives and tumor penetration. In this study, a sponge-inspired carbon composites-supported red blood cell (RBC) membrane that doubles as a stealth agent and photolytic carrier that transports tumor-penetrative agents (graphene quantum dots and docetaxel (GQD-D)) and heat with irradiation was developed.

View Article and Find Full Text PDF