Extrinsic, experimental information can be incorporated into thermodynamics-based RNA folding algorithms in the form of pseudo-energies. Evolutionary conservation of RNA secondary structure elements is detectable in alignments of phylogenetically related sequences and provides evidence for the presence of certain base pairs that can also be converted into pseudo-energy contributions. We show that the centroid base pairs computed from a consensus folding model such as RNAalifold result in a substantial improvement of the prediction accuracy for single sequences.
View Article and Find Full Text PDFNucleotide modifications are occurrent in all types of RNA and play an important role in RNA structure formation and stability. Modified bases not only possess the ability to shift the RNA structure ensemble towards desired functional confirmations. By changes in the base pairing partner preference, they may even enlarge or reduce the conformational space, i.
View Article and Find Full Text PDFProtein misfolding, aggregation, and fibril formation play a central role in the development of severe neurological disorders, including Alzheimer's and Parkinson's diseases. The structural stability of mature fibrils in these diseases is of great importance, as organisms struggle to effectively eliminate amyloid plaques. To address this issue, it is crucial to investigate the early stages of fibril formation when monomers aggregate into small, toxic, and soluble oligomers.
View Article and Find Full Text PDFMotivation: In living organisms, many RNA molecules are modified post-transcriptionally. This turns the widely known four-letter RNA alphabet ACGU into a much larger one with currently more than 300 known distinct modified bases. The roles for the majority of modified bases remain uncertain, but many are already well-known for their ability to influence the preferred structures that an RNA may adopt.
View Article and Find Full Text PDF