Publications by authors named "Yuliang Lin"

Living in the global-changing era, intelligent and eco-friendly electronic components that can sense the environment and recycle or reprogram when needed are essential for sustainable development. Compared with solid-state electronics, composite hydrogels with multi-functionalities are promising candidates. By bridging the self-assembly of azobenzene-containing supramolecular complexes and MXene nanosheets, we fabricate a MXene-based composite gel, namely MXenegel, with reversible photo-modulated phase behavior.

View Article and Find Full Text PDF

The interface friction mechanics of reinforcement material with filler is an essential issue for the engineering design of reinforced soil structure. The interface friction mechanics is closely associated with the properties of filler and reinforcement material, which subsequently affects the overall stability. In order to investigate the interface mechanism of a double-twisted hexagonal gabion mesh with a coarse-grained filler derived from a weathered red sandstone, a large laboratory pullout test was carried out.

View Article and Find Full Text PDF

Atomically thin oxide semiconductors are emerging as potential materials for their potentiality in monolithic 3D integration and sensor applications. In this study, a charge transfer method employing viologen, an organic compound with exceptional reduction potential among n-type organics, is presented to modulate the carrier concentration in atomically thin InO without the need of annealing. This study highlights the critical role of channel thickness on doping efficiency, revealing that viologen charge transfer doping is increasingly pronounced in thinner channels owing to their increased surface-to-volume ratio.

View Article and Find Full Text PDF

Block copolymer composite electrolytes have gained extensive attention for their promising performance in ionic conductivity and mechanical properties, making them valuable for future technologies. The control of the ionic conductivity through the self-assembly of block copolymers, however, remains a great challenge, especially in confined environments. In this study, we prepare block copolymer composite electrolytes using polystyrene--poly(ethylene oxide) (PS--PEO, SEO) as the polymer matrix and anodic aluminum oxide (AAO) templates as the ceramic skeleton.

View Article and Find Full Text PDF

To solve the durability of flexible base asphalt pavement, especially its anti-rutting problem, a design method on durable asphalt pavement of flexible base on anti-rutting performance was put forward in the paper, based on many experiments and calculations. Firstly, a method that asphalt could be selected according to penetration and the anti-rutting factor of its base asphalt was found, which solved the problem of the asphalt selection of the flexible base asphalt mixture design. Meanwhile, a method of skeleton-density structure gradation design was proposed based on the fractal void ratio of coarse aggregate, fractal volume of fine aggregate in coarse aggregate, penetration, fractal dimension of gradation particle size, and rutting tests, which effectively solved in advance the rutting and fatigue performance of flexible base asphalt mixtures.

View Article and Find Full Text PDF

The stiffnesses of embankments and culverts differ in the transition sections of high-speed railways (HSRs) due to their different supporting conditions. The dynamic irregularity caused by the different stiffnesses makes this transition area the weakest part of high-speed railways. Graded crushed stone combined with 5% cement is typically used to fill the subgrade in these transition areas.

View Article and Find Full Text PDF

Exploring stimuli-responsive ion-conductive materials is a challenging task, but it has gained increasing attention because of their enormous potential applications in actuators, sensors, and smart electronics. Here, we demonstrate a distinctive photoresponsive ion-conductive device that utilizes azobenzene-based ionic liquids ([AzoCMIM][Br], where = 2, 6, and 10), confined in nanochannels of anodic aluminum oxide (AAO) templates for photoisomerization. The structure of [AzoCMIM][Br] comprises photoresponsive and hydrophobic azobenzene moieties, hydrophilic imidazolium cations, and negatively charged bromide ions.

View Article and Find Full Text PDF

Stimuli-responsive ion nanochannels have attracted considerable attention in various fields because of their remote controllability of ionic transportation. For photoresponsive ion nanochannels, however, achieving precise regulation of ion conductivity is still challenging, primarily due to the difficulty of programmable structural changes in confined environments. Moreover, the relationship between noncontact photo-stimulation in nanoscale and light-induced ion conductivity has not been well understood.

View Article and Find Full Text PDF

Over the past few decades, stimuli-responsive materials have been widely applied to porous surfaces. Permeability and conductivity control of ions confined in nanochannels modified with stimuli-responsive materials, however, have been less investigated. In this work, the permeability and conductivity control of ions confined in nanochannels of anodic aluminum oxide (AAO) templates modified with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) brushes are demonstrated.

View Article and Find Full Text PDF

Background: Kernohan-Woltman notch phenomenon (KWNP) classically occurs when a lesion causes compression of the contralateral cerebral peduncle against the tentorium, resulting in ipsilateral hemiparesis. It has been studied clinically, radiologically and electrophysiologically which all confirmed to cause false localizing motor signs. Here, we demonstrate the potential use of fluorine-18 fluorodeoxyglucose (18 F-FDG) positron emission tomography/computed tomography (PET/CT) to identify KWNP caused by an epidural hematoma.

View Article and Find Full Text PDF

Relativistic vortex laser has drawn increasing attention in the laser-plasma community owing to its potential applications in various domains, e.g., generation of energetic charged particles with orbital angular momentum (OAM), high OAM X/γ-ray emission, high harmonics generation, and strong axial magnetic-field production.

View Article and Find Full Text PDF

The objective of this research was to develop a solution for the deterioration effect on the high-temperature rutting performance and water stability of SMC. This research proposed a method for designing an SMC normal temperature modified asphalt mixture based on the existing findings, experimental research and the performance balance. First, the power function curve model of the aggregate gradation was put forward.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) has been a useful sensing technique, in which inelastic light scattering can be significantly enhanced by absorbing molecules onto rough metal surfaces or nanoparticles. Although many methods have been developed to prepare SERS substrates, it is still highly desirable and challenging to design SERS substrates, especially with highly ordered and controlled three-dimensional (3D) structures. In this work, we develop novel SERS substrates with regular volcano-shaped polymer structures using the versatile solvent on-film annealing method.

View Article and Find Full Text PDF

Bio-inspired self-similar hierarchical honeycombs are multifunctional cellular topologies used for resisting various loadings. However, the crushing behavior under large plastic deformation is still unknown. This paper investigates the in-plane compressive response of selective laser melting (SLM) fabricated hierarchical honeycombs.

View Article and Find Full Text PDF

Composite polymer electrolytes (CPEs) with smart, stimuli-responsive characteristics have gained considerable attention owing to their noninvasive manipulation and applications in future technologies. To address this potential, in this work, we demonstrate photoresponsive composite polymer electrolytes, consisting of gel polymer electrolyte (GPE) and spiropyran-immobilized nanoporous anodic aluminum oxide (SP-AAO) templates. Under UV irradiation, the close SP form isomerizes to the open merocyanine (MC) form, creating extremely polarized AAO surfaces; whereas, under visible light irradiation, the MC form reverts to the SP form, creating neutral surface conditions.

View Article and Find Full Text PDF

Ordered arrays of polymer nanostructures have been widely investigated because of their promising applications such as solar-cell devices, sensors, and supercapacitors. It remains a great challenge, however, to manipulate the shapes of individual nanostructures in arrays for tailoring specific properties. In this study, an effective strategy to prepare anisotropic polymer nanopillar arrays via photo-fluidization is presented.

View Article and Find Full Text PDF

The blast resistance of a sandwich-walled cylinder/ring comprising two metal face-sheets and a graded metal foam core, subjected to internal air blast loading, is investigated. Analytical models are developed for the deformation of the sandwich cylinder with positive and negative gradient cores under internal blast loading. The deformation process is divided into three distinct phases, namely the fluid-structure interaction phase, core-crushing phase, and outer face-sheet deformation phase.

View Article and Find Full Text PDF

Fatigue damage affects both durability and safety, and it has been the most important distress in asphalt concrete. Fatigue damage occurs as a result of repeated traffic loading. An asphalt mixture is a typical viscoelastic material, and its fatigue damage is related to its viscoelastic properties.

View Article and Find Full Text PDF

Surface properties are essential for substrates exhibiting high sensitivity in surface-enhanced Raman scattering (SERS) applications. In this work, novel SERS hybrid substrates using polystyrene-block-poly(methyl methacrylate) and anodic aluminum oxide templates is presented. The hybrid substrates not only possess hierarchical porous nanostructures but also exhibit superhydrophilic surface properties with the water contact angle ≈0°.

View Article and Find Full Text PDF

1D polymer nanomaterials have attracted significant interest in recent years because of their unique properties and promising applications in various fields. It is, however, still a challenge to fabricate polymer nanoarrays with desired sizes and controlled morphologies. Here, an unprecedented approach, the laser-assisted nanowetting (LAN) method, to selectively fabricate polymer nanoarrays is presented.

View Article and Find Full Text PDF

In this work, we study the structure transformations of cylinder-forming polystyrene-block-polydimethylsiloxane (PS31k-b-PDMS14.5k) confined in cylindrical nanopores. PS-b-PDMS nanotubes, nanospheres, and curved nanodiscs are ingeniously prepared by a facile template wetting strategy using anodic aluminum oxide (AAO) templates.

View Article and Find Full Text PDF

The azido-bridged molybdenum complex [N(CH)][(μ-N){Mo(η-CH)(CO)}], 1, was synthesized and its reactions with unsaturated nitriles and alkynes were investigated. The isolated [3 + 2] cycloaddition products were the N(2), N(3) bound tetrazolate complexes [N(CH)][(μ-N)(μ-NC{R}-κN:N){Mo(η-CH)(CO)}] (R = C(CN)C(CN) (2), CHNO, (3)) and [N(CH)][(μ-NC{R}-κN:N)(μ-N){Mo(η-CH)(CO)}] (R = C(CN)C(CN) (4), CHNO (5)), and the N(1), N(2) bound triazolate complexes [N(CH)][(μ-NC{R}-κN:N)(μ-N){Mo(η-CH)(CO)}] (R = COCH (6) and R = COCHCH (7). The reactivity of these cycloaddition reactions could be determined by the electronic properties of both metal azide and dipolarophile.

View Article and Find Full Text PDF

Lightweight aluminum honeycomb is a buffering and energy-absorbed structure against dynamic impact and explosion. Direct and indirect explosions with different equivalent explosive masses are applied to investigate the in-plane deformation characteristics and energy-absorbing distribution of aluminum honeycombs. Two finite element models of honeycombs, i.

View Article and Find Full Text PDF

Experimental and numerical analyses were carried out to reveal the behaviors of two-layer graded aluminum foam materials for their dynamic compaction under blast loading. Blast experiments were conducted to investigate the deformation and densification wave formation of two-layer graded foams with positive and negative gradients. The shape of the stress waveform changed during the propagation process, and the time of edge rising was extended.

View Article and Find Full Text PDF

Objective: To investigate the effects of isoliquiritigenin on the migration and invasion of human glioma stem cells and the underlying mechanism.

Methods: The stem cell markers CD133 and Nestin in SHG44 human glioma stem cells were examined with immunofluorescence microscopy. The migration and invasion ability of glioma stem cells was determined by transwell method.

View Article and Find Full Text PDF