The cement industry has achieved the harmless and resourceful disposal of incineration fly ash, but the environmental safety of heavy metals during its service life is still unknown. Therefore, the evolution of heavy metal leaching during the wet-dry cycle of the incineration of fly ash after different solidification treatments has been studied. We provide a theoretical basis for the long-term safe use of incineration fly ash after resource utilization.
View Article and Find Full Text PDFIn the original publication [...
View Article and Find Full Text PDFPolycarboxylate ether (PCE) with different main chain structures was prepared by aqueous solution free radical polymerization using unsaturated acids containing sulfonic acid groups, acrylamide groups, and carboxyl groups and isoprenyl polyoxyethylene ether (IPEG). The molecular structure was characterized by infrared spectroscopy and gel chromatography, while adsorption, dispersion, and hydration properties were studied using a total organic carbon analyzer, rheometer, and isothermal microcalorimeter, respectively. The results show that the adsorption process of PCE on cement particles is spontaneous physical adsorption.
View Article and Find Full Text PDFTo investigate the effects of Reference cement (RC) and Belite cement (LC) systems, different molecular structures of polycarboxylate ether (PCE) were prepared through the free radical polymerization reaction and designated as PC-1 and PC-2. The PCE was characterized and tested using a particle charge detector, gel permeation chromatography, a rotational rheometer, a total organic carbon analyzer, and scanning electron microscopy. The results showed that compared to PC-2, PC-1 exhibited higher charge density and better molecular structure extension, with smaller side-chain molecular weight and molecular volume.
View Article and Find Full Text PDF