In chemical library analysis, it may be useful to describe libraries as individual items rather than collections of compounds. This is particularly true for ultra-large noncherry-pickable compound mixtures, such as DNA-encoded libraries (DELs). In this sense, the chemical library space (CLS) is useful for the management of a portfolio of libraries, just like chemical space (CS) helps manage a portfolio of molecules.
View Article and Find Full Text PDFThe development of DNA-encoded library (DEL) technology introduced new challenges for the analysis of chemical libraries. It is often useful to consider a chemical library as a stand-alone chemoinformatic object─represented both as a collection of independent molecules, and yet an individual entity─in particular, when they are inseparable mixtures, like DELs. Herein, we introduce the concept of chemical library space (CLS), in which resident items are individual chemical libraries.
View Article and Find Full Text PDFIn order to analyze the Chimiothèque Nationale (CN) - The French National Compound Library - in the context of screening and biologically relevant compounds, the library was compared with ZINC in-stock collection and ChEMBL. This includes the study of chemical space coverage, physicochemical properties and Bemis-Murcko (BM) scaffold populations. More than 5 K CN-unique scaffolds (relative to ZINC and ChEMBL collections) were identified.
View Article and Find Full Text PDFNowadays, drug discovery is inevitably intertwined with the usage of large compound collections. Understanding of their chemotype composition and physicochemical property profiles is of the highest importance for successful hit identification. Efficient polyfunctional tools allowing multifaceted analysis of constantly growing chemical libraries must be Big Data-compatible.
View Article and Find Full Text PDFNew models for ACE2 receptor binding, based on QSAR and docking algorithms were developed, using XRD structural data and ChEMBL 26 database hits as training sets. The selectivity of the potential ACE2-binding ligands towards Neprilysin (NEP) and ACE was evaluated. The Enamine screening collection (3.
View Article and Find Full Text PDFGraph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce novel open-source architecture HyFactor in which, similar to the InChI linear notation, the number of hydrogens attached to the heavy atoms was considered instead of the bond types. HyFactor was benchmarked on the ZINC 250K, MOSES, and ChEMBL data sets against conventional graph-based architecture ReFactor, representing our implementation of the reported DEFactor architecture in the literature.
View Article and Find Full Text PDFDNA-Encoded Library (DEL) technology has emerged as an alternative method for bioactive molecules discovery in medicinal chemistry. It enables the simple synthesis and screening of compound libraries of enormous size. Even though it gains more and more popularity each day, there are almost no reports of chemoinformatics analysis of DEL chemical space.
View Article and Find Full Text PDFThe ability to efficiently synthesize desired compounds can be a limiting factor for chemical space exploration in drug discovery. This ability is conditioned not only by the existence of well-studied synthetic protocols but also by the availability of corresponding reagents, so-called building blocks (BBs). In this work, we present a detailed analysis of the chemical space of 400 000 purchasable BBs.
View Article and Find Full Text PDFMost of the existing computational tools for de novo library design are focused on the generation, rational selection, and combination of promising structural motifs to form members of the new library. However, the absence of a direct link between the chemical space of the retrosynthetically generated fragments and the pool of available reagents makes such approaches appear as rather theoretical and reality-disconnected. In this context, here we present Synthons Interpreter (), a new open-source toolkit for de novo library design that allows merging those two chemical spaces into a single synthons space.
View Article and Find Full Text PDFNatural products (NPs), being evolutionary selected over millions of years to bind to biological macromolecules, remained an important source of inspiration for medicinal chemists even after the advent of efficient drug discovery technologies such as combinatorial chemistry and high-throughput screening. Thus, there is a strong demand for efficient and user-friendly computational tools that allow to analyze large libraries of NPs. In this context, we introduce NP Navigator - a freely available intuitive online tool for visualization and navigation through the chemical space of NPs and NP-like molecules.
View Article and Find Full Text PDFThe days when medicinal chemistry was limited to a few series of compounds of therapeutic interest are long gone. Nowadays, no human may succeed to acquire a complete overview of more than a billion existing or feasible compounds within which the potential "blockbuster drugs" are well hidden and yet only a few mouse clicks away. To reach these "hidden treasures", we adapted the generative topographic mapping method to enable efficient navigation through the chemical space, from a global overview to a structural pattern detection, covering, for the first time, the complete ZINC library of purchasable compounds, relative to 1.
View Article and Find Full Text PDFUniversal generative topographic maps (GTMs) provide two-dimensional representations of chemical space selected for their "polypharmacological competence", that is, the ability to simultaneously represent meaningful activity and property landscapes, associated with many distinct targets and properties. Several such GTMs can be generated, each based on a different initial descriptor vector, encoding distinct structural features. While their average polypharmacological competence may indeed be equivalent, they nevertheless significantly diverge with respect to the quality of each property-specific landscape.
View Article and Find Full Text PDFOver recent years, an industry of compound suppliers has grown to provide drug discovery with screening compounds: it is estimated that there are over 16 million compounds available from these sources. Here, we review the chemical space covered by suppliers' compound libraries (SCL) in terms of compound physicochemical properties, novelty, diversity, and quality. We examine the feasibility of compiling high-quality vendor-based libraries avoiding complicated, expensive compound management activity, and compare the resulting libraries to the ChEMBL data set.
View Article and Find Full Text PDF