Publications by authors named "Yuliana Markovska"

The effects of soil salinity on the functional activity of photosynthetic apparatus and pigment composition of two Paulownia lines (Paulownia tomentosa x fortunei and Paulownia elongata x elongata) were investigated. PAM chlorophyll fluorescence measurements revealed that salinity leads to: (i) an increase of the photochemical quenching coefficient (qP) and the linear electron transport rate (ETR) in both lines of Paulownia, while the maximum quantum yield of the primary photochemistry of PSII in the dark adapted state (Fv/Fm) was unaffected; (ii) improved the efficiency of the photochemical energy conversion (ФPSII); (iii) an impact on the chlorophyll fluorescence decrease ratio (RFd), which correlates to the net CO2 assimilation rate; (iv) an impact on [Formula: see text] reoxidation. The analysis of the kinetics of P700(+) reduction upon turning off far-red irradiation revealed that salinization lead to a delay of the cyclic electron transport around PSI in both studied lines as the effect on this process is more pronounced in P.

View Article and Find Full Text PDF

One-year-old two Paulownia lines (Ptomentosa x fortunei--TF 01 and R elongata x fortunei--EF 02) were grown, as pot experiment, in soil collected from the field of waste depository of Kremikovtzi ferrous metallurgical industry near Sofia. The soil was heavily polluted with Cd. Metals content (Ca, Mg, K, Na, Cd, Cu, Pb, Zn and Fe) in soil and its distribution in roots, stems and leaves of both lines was studied.

View Article and Find Full Text PDF

The functional peculiarities and responses of the photosynthetic system in the flowering homoiochlorophyllous desiccation-tolerant (HDT) Haberlea rhodopensis and the non-desiccation-tolerant spinach were compared during desiccation and rehydration. Increasing rate of water loss clearly modifies the kinetic parameters of fluorescence induction, thermoluminescence emission, far-red induced P700 oxidation and oxygen evolution in the leaves of both species. The values of these parameters returned nearly to the control level after 24 h rehydration only of the leaves of HDT plant.

View Article and Find Full Text PDF